Subject : Electromagnetic Theory

Subject Code : PS01CELC01
Instructions:
(a) Figure to the right indicates full marks.

Total Marks : 70
(b) All questions are compulsory.

Q-1 Multiple Choice Question.

1 When the flux \vec{F} across every closed surface S in a region E vanishes, \vec{F} is said to be a
\qquad in E .
(a) Irrotational Vector point function
(b) solenoid vector point function
(c) rotational Vector point function
(d) none of the above

2 Poisson's equation given as
a) $\nabla^{2} V=-\rho V / \varepsilon_{0}$
b) $\nabla^{2} \overline{V=\rho V} / \varepsilon_{0}$
c) $\nabla^{2} V=\rho V \varepsilon_{0}$
d) $\nabla^{2} V=-\rho V \varepsilon_{0}$

3 The Value of Curl (grad F), where $F=2 x^{2}-3 y^{2}+4 z^{2}$ is
a) $4 x-6 y+8 z$
b) $4 x \hat{i}-6 y \hat{j}+8 z \hat{k}$
c) 0
d) 3

4 The triple product of three vectors, $P \times(Q \times R)$ can be expanded as
a) (P.Q) $\times R$
b) $(P \times R) \cdot Q$
c) $Q(P . Q)-R(P . Q)$
d) $Q(P . Q)+R(P . Q)$

5 In terms of current density, Biot - Savart's Law is expressed as \qquad
a) $\int \frac{\vec{j} \times \overrightarrow{a_{r}}}{2 \pi r} \cdot d V$
b) $\int \frac{\vec{J} \times \overrightarrow{\boldsymbol{a}_{r}}}{2 \pi v^{2}} . d V$
c) $\int \frac{\sqrt{x} \overrightarrow{a r}}{4 \pi r} \cdot d V$
d) $\int \frac{\vec{\gamma} \times \overrightarrow{a x}}{4 \pi r^{2}} d V$

6 Magnitude of dipole moment $|\vec{p}|$ is given as
a) qd
b) q / d
c) d / q
d) None of these

7 \qquad Gradient of magnetic scalar potential gives magnetic field intensity
a) positive
b) negative
c) double
d) integral

8 The direction of magnetic field intensity vector is \qquad .
a) Vertical
b) Horizontal
c) Circumferential
d) None of these

Q-2 Answer the following Question.(Any Seven)
1 State Divergence theorem.
2 Define Scalar and vector quantities with examples.
3 What is Electric field intensity?
4 Give an account of Dipole and Dipole moment.
5 State the application of Ampere's circuital law.
6 Define magnetic flux density.
7 Explain current density.
8 Distinguish potential difference and potential.
9 State Faradays Law.

Q-3 (A) State and explain Green's theorem.
(B) Express $\vec{A}=X Y \hat{i}+Y Z \hat{j}+Z X \hat{k}$ in spherical co-ordinate system.
(B) Express $A=x Y \hat{1}$

OR
(B) Given the two points $C(-3,2,1)$ and $D\left(r=5, \theta=20^{\circ}, \phi=-70^{\circ}\right)$ find: (a) the spherical
coordinate of C. (b) the rectangular coordinates of $D(c)$ the distance from C to D.

Q-4 (A) Derive an expression for electric field due to sheet of line charge at some distance from the sheet.
(B) Explain Boundary conditions for perfect dielectric materials. OR
(A) State and explain the experimental law of coulomb and derive its vector form.

Q-5 (A) Obtain the boundary conditions for conductor.
(B) If $\varepsilon=\varepsilon_{0}$ and $V=8 x^{2} y z$, find (a) V at $P(2,-1,3)$; (b) ρ_{v} at P; (c) E atP.

OR
(B) Explain Poisson's and Laplace equation in detail.

Q-6 (A) State Biot-Savart's law. Derive an expression for magnetic field intensity H using Biot-savart's law
(B) Explain the concept of displacement current.

OR
(B) State the Maxwell's equation and derive the Maxwell's first equations in point form.

