No. of Printed Pages: 03

SARDAR PATEL UNIVERSITY

M.Sc. Semester-III: (Physical Chemistry) Examination (CBCS)-2018

Tuesday,30th October,2018

02:00 p.m. to 05:00 p.m.

PS03EPHC22, Advanced Characterization Techniques

N.B.:	i. Attempt all questions.	
	ii. Figures to right indicate full marks.	
	iii. Unless otherwise mentioned, symbols and notations have their usual standard meanings.	28
	iv. Neat sketches are to be drawn to illustrate answers, wherever required.	
	v. Assume suitable data, if necessary and indicate the same clearly.	
Q.1	question has four alternative responses marked (a),(b),(c) and (d) out of	[08
	which <i>only one</i> is the correct response. Please mark correct response i e (a) /(b) /(c) /(d).	
	i) The deformation per unit length is called	
	(a) Strain (b) Stress	
	(c) Elasticity (d) None of these	
	ii) Two parallel, equal and opposite forces acting tangentially to the surface of the body is called as	
	(a) Complementary stress (b) Compressive stress	
	(c) Shear stress (d) Tensile stress	
j	iii) Viscoelasticity exhibits which of the following properties?	
	(a) Time-dependent (b) Temperature-dependent	
	(c)Temperature and time dependent (d) Temperature and time independent	
	iv) Shape of true stress-strain curve for a material depends on	
	(a) Strain (b) Strain rate (c) Temperature (d) All	
	v) The presence of solvent in a crystalline sample of a compound could be	
	detected and quantified using:	
	(a) UV-VIS (b) AAS (c) TGA (d) ESI-MS	
	vi) In DTA, sharp endothermic peaks give ideas of changes in,	
	whereas broad endotherms signify reactions.	
	(a) amorphous, hydration (b) crystallinity, dehydration	
	(c) amorphous, dehydration (d) crystallinity, hydration	
ν	Statement 1: Brookfield viscometer is very robust, is supported by software	19
	and even shows values of K and n, but, sometimes particles suspended in the	
	fluid cause problems.	
	Statement 2: Drawbacks of plate and cone viscometer: edge-effects,	ŧ.
,	turbulence and temperature effects.	
	(a) True, False (b) True, True (c) False, False (d) False, True	
	(4) 1 4100, 1140	
	(P.T.)	1-1

	viii	by the second of a pacual pacu	
		(a) A liquid which becomes less viscous as the rate of shear increases(b) A liquid which becomes more viscous as the rate of shear increases	
		(c) A liquid which becomes less viscous over time when a constant shear stress is applied	
		(d) A liquid which becomes more viscous over time when a constant shear stress is applied	
Q.2		Answer the following questions as directed (ANY SEVEN).	[14
	i)	Explain how liquid crystalline polymers at the molecular and supermolecular level are useful to understand mechanical properties of polymer.	[14
	ii)	Define: Poison's ratio (v), Shear modulus (G)	
	iii)	Discuss viz-a-viz: Elastic solid and Viscous liquid.	
	iv)	Define: Storage modulus G ₁ and Loss Modulus G ₂	
	v)		
	vi)	11 Mary State of Billion and Thomas Analysis 11/1 A 1 in Physical	
	vii)	chemistry and Analytical chemistry. Explain Basic continuum and multi-acale and laborated and acade acade and acade and acade acade and acade	
	viii)	Explain Basic continuum and multi-scale models as a foundation rheology. Describe succinctly: Network of Entanglements.	
	ix)	Mention one application of rheology in Food and processing industries.	
Q.3	a)	Elucidate how blends, grafts and copolymers at the molecular and supermolecular level are valuable to recognize mechanical properties of polymer.	[06]
	b)	Discuss Engineering components of strain. Present component of strain. OR	[06]
	b)	(i) Define: Deformation ratio. Give details of finite strain deformation of a cube, of unit dimensions in the undeformed state to the rectangular parallelepiped.	[03]
		(ii) Define: Young Modulus (E) and Bulk Modulus (K)	[03]
Q.4	a)	Derive the Strain energy function $U = \Delta A = \frac{1}{2} NkT (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$	[06]
	b)	Describe Kelvin model and derive the expression:	[06]
Ĭ.		$e = J\sigma[1-\exp(-\frac{t}{\tau})]$ where J is the Spring compliance.	
	ы	OR	
	b)	(i) Define: Creep and Creep compliance $J(t)$; Retardation time (τ) ; Relaxation time (τ)	[03]
	, All	(ii) What is Stress Relaxation? Show that for amorphous linear polymers at high temperature the stress may eventually decay to zero.	[03]

Q.5	a)	Write working principle of differential thermal analysis (DTA). How Environmental factors and sample factors affect the DTA curve?	[06]
	b) i)	Compare: Derivative Thermogravimentry (DTG) and Thermogravimentry analysis (TGA).	[03]
	ii)	Write Borchardt and Daniels theoretical basis to find a relationship between sample parameters and the area under the peak of differential thermal analysis (DTA).	[03]
		OR	
	b)	Explain working principal, instrumentation and applications of differential scanning calorimetry (DSC).	[06]
Q.6	a)	Expound following non-Newtonian behaviour with suitable illustrations: (i) Shear Thinning Fluids (ii) Dilatant Fluids (iii) Bingham Plastic	[06]
	b)	Elaborate viscoelastic effects of following common non-Newtonian behavior with appropriate examples:	[06]
. 1	*	(i) Weissenberg effect (ii) Fluid memory and (iii) Die Swell	
		OR	
	b)		
	(i) (ii)	Define: Relaxation modulus. Explain $\log G$ vs $\log T$ graph for stress relaxation. Define: Deborah number. How D_e is valuable to understand solid and liquid behavior?	[03] [03]

behavior?