[165] ## SARDAR PATEL UNIVERSITY ## M.Sc. Chemistry (Third Semester) Examination Saturday, 27th October 2018 Heterocyclic Chemistry (PS03CORC23) Time: 2:00 pm to 5:00 pm Total marks: 70 Note: (i) Figure to the right indicates marks (ii) Attempt all questions ## Que: 1 Choose the correct answer from the following multiple choice of questions [80] - Which of the following compound is produced, when phenyl hydrazine reacts with acetone in presence of ZnCl₂ at 180 °C? - (a) 2-methylindole (b) 3-ethylindole (c) 4-methylindole - (d) 6-methylindole - When hydrogenation of benzofuran is carried out in presence of Pd/C at 100 °C (ii) temperature then which of the following compounds is produced? - (a) Octahydrobenzofuran - (b) 2,3-dihydrobenzofuran (c) 2-ethylphenol - (d) 2-propylphenol - (iii) Find out the correct 'X' and 'Y' in following reaction. - (a) X=Phthaldehyde, Y=1,4-dimethyl phthalazine - (b) X=Phthaldehyde, Y=2,4-dimethyl quinazoline - (c) X=Phthalic anhydride, Y=1,4-dimethyl phthalazine - (d) X=Phthalic anhydride, Y=1,4-dimethyl quinazoline - (iv) Which of the following gives benzo[f]quinoline via Skraup synthesis? - (a) Naphthalen-1-amine - (b) Pyridin-2-amine - (c) Pyridin-3-amine - (d) Naphthalen-2-amine - Find out the correct structure of violuric acid. - (vi) Which of the following reagent not used for deoxylation of pyridine N-oxide? - (b) NaNH₂ - (c) P(OEt)₃ - (d) H₂/Pd - (vii) When resorcinol is reflux with 1,3-diketone in presence of HCl/Acetic acid and FeCl₃ at room temperature to gives, which of the following compounds? - (viii) Which of the following compounds act as COX-2 inhibitors? - (a) Leflunomide - (b) Tartrazine - (c) Phenylbutazone - (d) Celicoxibe | Que: 2 | 2 An | swer the following (Any seven) | [14 | |--------|-----------------|--|-----| | | (i) | Draw the correct structure for the following fused heterocycles. | | | | | (a) Imidazo[4,5-b][1,4]thiazine (b) Isoxazolo[3,4-b]pyrazine | | | | (ii) | Give the importance of Tryptophan. | | | | (iii) | Complete and rewrite the following reaction. | | | | | | | | | | + CI-CH ₂ COOH EtONa ? H+ ? Zn ? | | | | 4.5 | SH H ₂ O AcOH | * 1 | | | (iv) | Explain: the oxidative degradation of quinoline and substituted quinoline. | | | | (v) | explain: the reactions of quinoline-N-oxide and isoquinoline-N-oxide with DOCL | | | | (vi) | Justify: the pyridine is week base than alighatic amines. Also brief the orbital | | | | (:) | picture of pyrigine. | | | | (vii)
(viii) | Discuss the typical reactivity of pyrimidine. | | | | (viii) | Brief the ANRORC reaction of quinoline. | | | | (IA) | Compare the aromaticity of oxazole, imidazole and thiazoles. | | | Que: 3 | (a) | Explain the reactivity of indata Tanton a great and a second | | | | (••) | Explain the reactivity of indole. Justify that "the indole is dominated by easy electrophilic substitution in five member ring". | [6] | | | | or a substitution in five member ring. | | | | (b) | Answer the following | [6] | | | | 40.774 | [6] | | | | (i) Electrophilic attack on benzo[b]thiophene is more preferred at β-position | | | | | Tather than α- position. | | | | | (ii) Give the reaction of benzo[b] furan with (a) reducing agents, (b) cycloaddition | | | | | reaction and (c) photodimerization. | | | | (b) | Civo the court was the residence of the court cour | | | | (0) | Give the synthesis of following (i) Benzofuran from coumarin | [6] | | | | (ii) Benzol hithianhan fun 2 | . , | | | | (ii) Benzo[b]thiophene from 2-mercaptocinnamic acid | | | Que: 4 | (a) | Give the synthesis of phthalogine from what all and a single synthesis of phthalogine from what all and a single synthesis of phthalogine from what all the phthalogin | | | | | Give the synthesis of phthalazine from phthalic anhydride and thionyl chloride. Also provide the reactions of quinoxaline with (i) RMgX/RLi; (ii) HCN and (iii) | [6] | | | | LiAlH ₄ LiA | | | | | | | | | (b) | Give the electrophilic substitution reactions of substituted quinoline and | | | | | isoquinoline. | [6] | | | | OR | | | | (b) | Give the synthesis of following | [2] | | | | | [6] | | | - 4 | (i) Quinoline from aniline and glycerol. | | | | | (ii) Isoquinoline from benzaldehyde and 2,2-diethoxyethanamine. | | | | | | | - Que: 5 (a) Suggest the reaction and mechanism of pyridine-N-oxide with (i) PhCOO NO₂ [6] and (ii) AC₂O. - (b) Complete the following reactions and rewrite it with mechanism. [6] H₂/Pd ?? - (b) Discuss the reactions of barbituric acid. Also give the reactions and mechanism of Pyrimidine with (i) NaNH2 and (ii) NH2NH2. - Que: 6 (a) Give the Pechmann synthesis of coumarin and give their reactions with (i) [6] electrophilic reagents (ii) nucleophilic reagents. - (b) Explain the following [6] - (i) Pyrylium cation is more reactive than pyridinium towards nucleophilic addition. - (ii) Benzo[c]pyrylium can be converted into isoquinoline, but benzo[b]pyrylium does not. OR (b) Explain the reactivity of 1,2-azoles and 1,3-azoles. Also give the Robinson Gabriel [6] synthesis of 2,4-diphenyloxazole. . en de la composition La composition de la ing the state of t and the second of o