Seat No.:_____ No. of Printed Pages: 2 [86] SARDAR PATEL UNIVERSITY

M.Sc. Chemistry Examination, Third Semester (CBCS)

	Frida	ay,				Date: <u>21-10-2016</u>	·
	Sessio	on: Evening	Time: <u>02.00</u>	p.m. to	5.00 p.m.		
		Subject: <u>S</u>	Spectroscopy-I	Paper:	PS03CIPC01	[Total Marks: 70]	
N.B.	, ,	gures to the right in ttempt all questions.	,	ks.			·
Q. 1	Se	lect the correct ans	wer from each	of the fo	llowing:		(08
1.	In (a) (b)	EIS, the primary bear X-ray photons Electrons	m is made up of	(c) X (d) ic	 -ray photon o ons	r ions	
2.	_	tential.	_	-		h current or to a high	
						(d) Flame atomizer	
3.		atomic force microsc Gold (opy (AFM), car (b) Diamond	ntilever tij (c) Grap	p is made up o hite (d	of) Above all	
4.	an ele	^	used to provide	informat s called_	ion regarding	th specimen atoms in bonding state of each (d) STM	
	• ,		` '	` '		, ,	
5.	De (a)	etermination of Ca in Na	blood serum is j (b) Mg	possible i (c) L	n the present a	of (d) Ba	
6.		uorescence emission i 10 ⁵ s	s over in (b) 10 ⁻⁵ s	(c) 1	10 ^{-1/5} s	(d) Above all	
7.	de: (a)	he non-luminous air - termination of elemen Fe, Ca, Mg Transition elements	nts	(c) E	°C is the best Both (a) and (the None of all	are correct	
8.		ne standard used in flu TMS	orescence spectors) (b) DSS	± •	is Chodemine	(d) Acetanilide	
Q. 2	Ar	nswer the following: ((Any Seven)				(14
	(i)	Explain external con	nversion in mole	ecular lun	ninescence.		·
	(ii)	Write the principle	of XPS.				
	(iii)	What is the Grothus	Draper law?		•		-
	(iv)	Describe the import	•	analysis i	in science and	technology.	
	(v)		n is mainly used	•		nination of alkali and	
•		•	Ĉ)		(P.T.O)	

 [viii] Write the sequence of events taking place in atomization of sample (MX) in flame atomizer. [viii] Define the term "Sensitized fluorescence". [ix] Give neat and labeled diagram of SEM instrument. [a] Explain in detail about the burners which have been used in atomic absorption spectroscopy. [b] Answer the followings: [i] What is ICP? Explain instrumentation of ICP-AES. [ii] Write in brief note on Zeeman background correction. OR [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	(6) (6)
 [ix] Give neat and labeled diagram of SEM instrument. [a] Explain in detail about the burners which have been used in atomic absorption spectroscopy. [b] Answer the followings: [i] What is ICP? Explain instrumentation of ICP-AES. [ii] Write in brief note on Zeeman background correction. OR [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	(6
 [a] Explain in detail about the burners which have been used in atomic absorption spectroscopy. [b] Answer the followings: [i] What is ICP? Explain instrumentation of ICP-AES. [ii] Write in brief note on Zeeman background correction. OR [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	(6
 [b] Answer the followings: [i] What is ICP? Explain instrumentation of ICP-AES. [ii] Write in brief note on Zeeman background correction. OR [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	(6
 [i] What is ICP? Explain instrumentation of ICP-AES. [ii] Write in brief note on Zeeman background correction. OR [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	
 [ii] Write in brief note on Zeeman background correction. OR [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	(6)
OR [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å.	(6)
 [b] Answer the followings: [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	(6
 [i] Discuss various applications of plasma emission spectroscopy. [ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å. 	(6)
[ii] Calculate the ratio of number of sodium atoms in the 3P excited states to the number in the ground state at 2350 K. The average wavelength for the two sodium emission lines involving the 3P to 3S transition is 5895Å.	
[h=1.987 x 10^{-16} erg/cm ⁻¹ , Boltzmann Const= 1.38×10^{-16} erg/deg, c= 2.9979×10^8 m/s]	
[a] Give an account in detail on chemiluminescence.	(6
[b] Describe advantages, limitations and required precautions of spectroflorometer. OR	(6)
[b] Answer the following:	(6
	, ,
[ii] Define the terms: Intersystem crossing and internal conversion in molecular fluorescence.	
[a] Explain in brief on instrumentation of ESCA.	(6
[b] Answer the following:	(6
[i] Explain in brief on chemical shift in ESCA.	``
·	
a vacuum if the atom is moving toward the detector at a velocity of 8.50×10 ⁵ m/s and if the wavelength of radiation emitted by Sodium with no motion is 589 nm.	
[b] Write a note on auger electron spectroscopy (AES).	(6
[a] Write a note on scanning tunneling microscope (STM) OR atomic force microscope (AFM)	(6
[b] Answer the following:	(6
[i] Explain the type of interactions of primary beam electrons involved with sample in SEM.	
[ii] Differentiate AFM and STM techniques.	
3 2 5	
$\overline{(2)}$	
	 [b] Describe advantages, limitations and required precautions of spectroflorometer. OR [b] Answer the following: [i] Discuss about quenching in photoluminescence. [ii] Define the terms: Intersystem crossing and internal conversion in molecular fluorescence. [a] Explain in brief on instrumentation of ESCA. [b] Answer the following: [i] Explain in brief on chemical shift in ESCA. [ii] Calculate the observed frequency of the radiation emitted from a sodium atom in a vacuum if the atom is moving toward the detector at a velocity of 8.50×10⁵ m/s and if the wavelength of radiation emitted by Sodium with no motion is 589 nm. OR [b] Write a note on auger electron spectroscopy (AES). [a] Write a note on scanning tunneling microscope (STM) OR atomic force microscope (AFM) [b] Answer the following: [ii] Explain the type of interactions of primary beam electrons involved with sample in SEM. [iii] Differentiate AFM and STM techniques.