SEAT NO:	
))	SARDA

No. of Printed Pages: 03

AR PATEL UNIVERSITY

M.Sc.Semester-III: (Physical Chemistry) Examination (CBCS)-2019 Monday,25th November,2019

02:00p.m. to 05:00 p.m. PS03EPHC22, Advanced Characterization Techniques					
N.B.:		Attempt all questions.			
	ii. Figures to right indicate full marks.				
	iii. Unless otherwise mentioned, symbols and notations have their usual standard				
	<i>3</i>	meanings. Neat sketches are to be drawn to illustrate answers, wherever required.			
		Assume suitable data, if necessary and indicate the same clearly.			
Q.1		The question i) to viii) contain Multiple Choice Questions (MCQs). Each question has four alternative responses marked [A], /[B] /[C] /[D] out of which <i>only one</i> is the correct response. Please tick mark correct response i e [A], /[B] /[C] /[D].	[08]		
	i) The percentage elongation and the percentage reduction in area depends upon:				
		[A] Tensile strength of the material [B] Ductility of the material			
		[C] Toughness of the material [D] None of these			
	ii) Every material obeys the Hooke's law within				
		[A] Elastic limit [B] Plastic limit			
		[C] Limit of proportionality [D] None of these			
	iii)	· -			
		results in to model.			
		[A] Maxwell [B] Kelvin-Voigt			
		[C] Standard linear solid model [D] Prony series			
	iv) Stress relaxation				
		[A] is the ability to return to its original shape, ability to store energy			
	[B] if the stress is held constant, the strain increases with time				
		[C] is the gradual decrease of stress when the material is held at constant			
	٠	strain			
	[D] if the strain is held constant, the stress decreases with time v) In TG Experiment, the choice of material of furnace working in the				
	temperature range 1100-1500° C is [A] Kanthal or Nichrome wire or ribbon [B] Platinum or any alloy				
		[C] Tungesten of molybdenum [D] Platinum -Rhodium alloy			
	vi)	Decomposition temperature of CaCO ₃ in thermogravimetric analysis will be			
	highest in dynamic atmosphere of [A] nitrogen [B] synthetic gas				
		[C] 1:1 mixture of O ₂ and CO [D] water gas			

vii) Statement 1: In $\mu_a = \tau/\gamma = K\gamma^{(n-1)}$, n = consistency index and K is the flow behavior index.

Statement 2: n = 1 for Newtonian fluids, n < 1 for dilatant fluids and n > 1 for pseudo plastic fluids. Which of the following is correct?

[A] True, False [B] True, True [C] False, False [D] False, True

viii) The diagram below is a graph of change in shear stress with respect to velocity gradient in a fluid. What is the type of the fluid?

[A] Newtonian [B] Non Newtonian [C] Ideal [D] Dilated

Q.2 Answer the following questions as directed (ANY SEVEN).

[14]

- i) To understand mechanical properties of polymer, how average molecular mass and molecular mass distributions are useful.
- ii) Explain with suitable illustration the generalized Hooke's law.
- iii) Discuss Affine deformation in relation to the molecular theory of rubber elasticity.
- iv) Why in natural rubber, the increase in tensile stress occurs due to strain induced crystallization?
- v) List out application of DTA in Inorganic chemistry.
- vi) Discuss Sample Shape factor affecting DSC Curve.
- vii) Elucidate the terms: (I) Shear stress (II) Shear rate in relation to rheology.
- viii) How viscosity changes in respect to the amount of shear or stress applied to the pseudoplastic?
- ix) Discuss the Boltzmann Superposition principle in brief.
- Q.3 a) Explain how chemical and steric isomerism are useful to recognize [06] mechanical properties of polymers.
 - b) Converse components of stress. Provide component of stress in the form of [06] stress tensor, σ_{ij} .

OR

- b) (i) Describe succinctly strain energy function. [03]
 (ii) Define: Shear modulus (G) and Poison's ratio (v) [03]
- Q.4 a) What are Dynamic mechanical measurements? Define (using Phasor diagram) [06] Complex modulus G* and Complex compliance J*.
 - b) Express Maxwell model and derive the expression: [06]

 $\sigma = \sigma_0 \exp(-\frac{t}{\tau})$ where τ is the relaxation time. Also write limitations of Maxwell model.

		OR	
	b)	(i) Explain the creep for single step loading of a stress σ_0 at time $\tau = 0$ by using Boltzmann Superposition principle.	[03]
		(ii) Write down simplifying assumptions of the Statistical theory of rubber elasticity.	[03]
Q.5	a)	Explain working principle, instrumentation and applications of Thermomechanical Analysis (TMA).	[06]
	b)		
	i)	Discuss about the furnace and thermocouples components in DTA apparatus.	[03]
	ii)	Write a note on Instrumental factors affecting the DTA curve.	[03]
	ĺ	OR	
	b)	Describe about the Balance; temperature measurements and recorder as basic units in a thermobalance of TG equipment.	[06]
Q.6	a)	Define following terms in connection with viscoelastic measurements:	[06]
	,	(I) Storage Modulus (II) Loss tangent and (III) Phase angle (δ)	
	b)	Discuss vis-à-vis Newtonian fluids and non- Newtonian fluids.	[06]
		OR	
	b)	· · · · · · · · · · · · · · · · · · ·	
	(i)	Explain Stress relaxation modulus of an uncrosslinked melt graph in different zone.	[03]
	(ii)	Explain: Pitch drop experiment.	[03]

.