SEAT	No.
------	-----

No. of printed pages: 02

Sardar Patel University Examination 2019

M.Sc. (Semester-III) Inorganic Chemistry, PS03CINC22

Nuclear Chemistry and Reaction Mechanism

20/11/2019 (Wednesday) Time: 2:00 pm to 5:00 pm

Note: Numbers at the right show full marks.				Total Marks: 7	Total Marks: 70	
1) If ²	²³⁵ U ₉₂ decay	s only by emittir	rom the followin ng 2α & 1β partic (c) ²³⁶ Ac ₈₉	les, the possible product	t is	[8]
	hen ³⁵ Cl ₁₇ ur ³² P ₁₅	ndergo (n,p) read (b) ³⁵ S ₁₆	etion, the radioiso (c) ³⁴ S ₁₆	tope formed is	·	
(a)	CuS	(b) ZnS	(c) both a & b	o formation of(d) none of these		
4) Th	e rate of exc	change for Co/Co (b) NO ₃	o ⁺² is much faster (c) CH ₃ COO	with (d) ClO ₄		
5) Th	ne chromium [Cr(H ₂ O) ₆] ⁺³	(III) species for (b) [Cr(H ₂ O) ₅ C	med after electror l] ⁺² (c) CrCl ₆ ⁻¹	transfer between $IrCl_6$ (d) $Cr(H_2O)_3Cl_3$	2 & Cr(H ₂ O) ₆ ⁺² is	
6) El (a)	ectron transf d-d transition	fer from Fe(H ₂ O n (b) inner sphere	9_6^{+2} to Fe(H ₂ O) ₆ ⁺² electron transfer	is likely to occur via(c) SN¹ (d) outer sphere 6	electron transfer	
an	intermediate	e (MX ₅) having	SN ¹ mechanism stropuare pyramidal		(MX_5Y) may produce d) none of above	
	ne complex [) one, two		n haveoptica (c) three, no	ally active &optica (d) no, three	ally inactive isomer(s).	
Q.2. i. ii. iii. iv. v. vi. vii. viii. ix.	Calculate n proton = 1. Avogadro n Explain ¹⁹ F Write the pr Explain the Write a sho Write the op Explain two Explain Con	number = 6.02 x NMR for SF ₄ at rocess for the sep prevention of contract rote on tracer ptical isomers of the electron transfer implementary &	nding energy for s of electron = (10 ²³ mol ⁻¹ , speed t various temperary paration of radioa paration in brass to studies using Triff [Co(en)(NO ₂) ₂ (Per reaction with so Non-Complement	0.000548 m _u , mass of a of light = 2.998×10^8 m tures. Letive uranium and pluto by CS_2 .	ns ⁻¹) onium. uble examples.	[14]

Q.3. Answer the following:		
[A] Explain in detail how stable isotopes are separated.	[6	
[B] Write a note on nuclear stability and N/P ratio with suitable graph.	[6	
Or	Įv	
[B] (i) What is nuclear binding energy. Explain with nuclear energy binding curve.(ii) Write a short note on ortho- and para-hydrogen.	[3 [3	
Q.4. Answer the following:	10	
[A] Explain the isotopic exchange by electron transfer mechanism.	5.00	
[B] What are the reasons for considerable effect of anion on the rate of exchange between metal and their ions?	[6]	
\mathbf{Or}	[6]	
[B] (i) Write a short note on radiometric method for analysis.		
(ii) Write a short note on electrochemical displacement for exchange reaction.		
or crock of the displacement for exchange reaction.	[3]	
Q.5. Answer the following.		
[A] Describe the dissociative (SN ¹) & associative (SN ²) mechanisms with examples.		
[B] Discuss the kinetics of anation reaction.	[6] [6]	
Or	[v]	
[B] (i) A Pt(II) complex of tetramethyldiethylenetriamine is attacked by Cl ⁻ ions 10 ⁵ times less rapidly than the diethylenetriamine analogue. Explain this observation in terms of an associative rate determining step.		
(ii) Write the increasing order of the rate of substitution 1. IX O is also as	[3]	
(ii) Write the increasing order of the rate of substitution by H ₂ O in the following complexes giving the reason.		
$[\text{Co(NH}_3)_6]^{+3}$, $[\text{Rh(NH}_3)_6]^{+3}$, $[\text{Ir(NH}_3)_6]^{+3}$, $[\text{Mn(H}_2O)_6]^{+2}$	[3]	
Q.6. Answer the following.		
[A] Write a short note on electron transfer by inner sphere mechanism.		
B] Discuss isomerization & racemization in octahedral complexes giving suitable examples.	[6]	
()r	[6]	
B] (i) When the pyridine is added to an aqueous solution of Na ₃ RhCl ₆ , the reaction stop at		
(P) (3) out on adding a small amount of ethanol quantitation of		
1 d. (P) 40121 Occurs. Explain this with suitable mechanism		
(ii) For the following general reaction, explain the effect of halides & discuss the mechanism	[3]	
of follows:		
$[\text{Co(NH}_3)_5\text{X}]^{+2} + [\text{Cr(H}_2\text{O})_6]^{+2} + 5\text{H}_3\text{O}^+ \rightarrow [\text{Co(H}_2\text{O})_6]^{+2} + [\text{Cr(H}_2\text{O})_5\text{X}]^{+2} + 5\text{NH}_4^+$	[3]	