| SEAT | No. | |------|-----| |------|-----| No. of printed pages: 02 ## Sardar Patel University Examination 2019 ## M.Sc. (Semester-III) Inorganic Chemistry, PS03CINC22 ## Nuclear Chemistry and Reaction Mechanism 20/11/2019 (Wednesday) Time: 2:00 pm to 5:00 pm | Note: Numbers at the right show full marks. | | | | Total Marks: 7 | Total Marks: 70 | | |---|---|---|--|--|---|------| | 1) If ² | ²³⁵ U ₉₂ decay | s only by emittir | rom the followin
ng 2α & 1β partic
(c) ²³⁶ Ac ₈₉ | les, the possible product | t is | [8] | | | hen ³⁵ Cl ₁₇ ur
³² P ₁₅ | ndergo (n,p) read
(b) ³⁵ S ₁₆ | etion, the radioiso
(c) ³⁴ S ₁₆ | tope formed is | · | | | (a) | CuS | (b) ZnS | (c) both a & b | o formation of(d) none of these | | | | 4) Th | e rate of exc | change for Co/Co
(b) NO ₃ | o ⁺² is much faster
(c) CH ₃ COO | with (d) ClO ₄ | | | | 5) Th | ne chromium
[Cr(H ₂ O) ₆] ⁺³ | (III) species for
(b) [Cr(H ₂ O) ₅ C | med after electror l] ⁺² (c) CrCl ₆ ⁻¹ | transfer between $IrCl_6$ (d) $Cr(H_2O)_3Cl_3$ | 2 & Cr(H ₂ O) ₆ ⁺² is | | | 6) El
(a) | ectron transf
d-d transition | fer from Fe(H ₂ O
n (b) inner sphere | 9_6^{+2} to Fe(H ₂ O) ₆ ⁺² electron transfer | is likely to occur via(c) SN¹ (d) outer sphere 6 | electron transfer | | | an | intermediate | e (MX ₅) having | SN ¹ mechanism
stropuare pyramidal | | (MX_5Y) may produce
d) none of above | | | | ne complex [
) one, two | | n haveoptica
(c) three, no | ally active &optica
(d) no, three | ally inactive isomer(s). | | | Q.2. i. ii. iii. iv. v. vi. vii. viii. ix. | Calculate n
proton = 1.
Avogadro n
Explain ¹⁹ F
Write the pr
Explain the
Write a sho
Write the op
Explain two
Explain Con | number = 6.02 x
NMR for SF ₄ at
rocess for the sep
prevention of contract
rote on tracer
ptical isomers of
the electron transfer
implementary & | nding energy for s of electron = (10 ²³ mol ⁻¹ , speed t various temperary paration of radioa paration in brass to studies using Triff [Co(en)(NO ₂) ₂ (Per reaction with so Non-Complement | 0.000548 m _u , mass of a of light = 2.998×10^8 m tures. Letive uranium and pluto by CS_2 . | ns ⁻¹) onium. uble examples. | [14] | | Q.3. Answer the following: | | | |---|------------|--| | [A] Explain in detail how stable isotopes are separated. | [6 | | | [B] Write a note on nuclear stability and N/P ratio with suitable graph. | [6 | | | Or | Įv | | | [B] (i) What is nuclear binding energy. Explain with nuclear energy binding curve.(ii) Write a short note on ortho- and para-hydrogen. | [3
[3 | | | Q.4. Answer the following: | 10 | | | [A] Explain the isotopic exchange by electron transfer mechanism. | 5.00 | | | [B] What are the reasons for considerable effect of anion on the rate of exchange between metal and their ions? | [6] | | | \mathbf{Or} | [6] | | | [B] (i) Write a short note on radiometric method for analysis. | | | | (ii) Write a short note on electrochemical displacement for exchange reaction. | | | | or crock of the displacement for exchange reaction. | [3] | | | Q.5. Answer the following. | | | | [A] Describe the dissociative (SN ¹) & associative (SN ²) mechanisms with examples. | | | | [B] Discuss the kinetics of anation reaction. | [6]
[6] | | | Or | [v] | | | [B] (i) A Pt(II) complex of tetramethyldiethylenetriamine is attacked by Cl ⁻ ions 10 ⁵ times less rapidly than the diethylenetriamine analogue. Explain this observation in terms of an associative rate determining step. | | | | (ii) Write the increasing order of the rate of substitution 1. IX O is also as | [3] | | | (ii) Write the increasing order of the rate of substitution by H ₂ O in the following complexes giving the reason. | | | | $[\text{Co(NH}_3)_6]^{+3}$, $[\text{Rh(NH}_3)_6]^{+3}$, $[\text{Ir(NH}_3)_6]^{+3}$, $[\text{Mn(H}_2O)_6]^{+2}$ | [3] | | | Q.6. Answer the following. | | | | [A] Write a short note on electron transfer by inner sphere mechanism. | | | | B] Discuss isomerization & racemization in octahedral complexes giving suitable examples. | [6] | | | ()r | [6] | | | B] (i) When the pyridine is added to an aqueous solution of Na ₃ RhCl ₆ , the reaction stop at | | | | (P) (3) out on adding a small amount of ethanol quantitation of | | | | 1 d. (P) 40121 Occurs. Explain this with suitable mechanism | | | | (ii) For the following general reaction, explain the effect of halides & discuss the mechanism | [3] | | | of follows: | | | | $[\text{Co(NH}_3)_5\text{X}]^{+2} + [\text{Cr(H}_2\text{O})_6]^{+2} + 5\text{H}_3\text{O}^+ \rightarrow [\text{Co(H}_2\text{O})_6]^{+2} + [\text{Cr(H}_2\text{O})_5\text{X}]^{+2} + 5\text{NH}_4^+$ | [3] | |