C74J

Sardar Patel University

M.Sc.(Industrial Polymer Chemistry) Sem-III

PS03CIPC21: Spectroscopy of Polymers Day & Date: Friday, 1st January 2021

Time: 10:00 á.m. to 12:00 noon

Max. Marks: 70

- Q-1 (A) Answer the following Multiple Choice Questions. All questions are compulsory [08]
 - 1) The valence skeleton vibration at 1,153 cm⁻¹ in the IR spectrum of polypropylene corresponds to the...
 - a. Isotactic configuration
- b. Syndiotactic configuration
- c. Atactic configuration
- d. Mixture of atactic and syndiotactic configurations
- 2) The measurement in the stereoregularity in the polymers by the assignment of an IR frequency to a particular isomer may be established by....
 - a. Correlation with the isomers of low-molecular-weight analogs
 - b. Assignments based on normal coordinate analysis
 - c. Comparison of absorbance with calculated values from other physical techniques such as NMR spectroscopy
 - d. All the above
- 3) Which of the following is an auxochrome?
 - a. Chlorine
- b. Carbonyl
- c. Ethylenic
- d. Nitro
- 4) Which of the following statement is TRUE about UV-visible spectroscopy?
 - a. It refers to the part of the electromagnetic spectrum between the cosmic and γ -ray wave region.
 - b. Electronic transitions take place by absorption of UV-visible radiation by a molecule
 - c. Change in only rotational energy level takes place only by absorption of UV-visible radiation by a molecule
 - d. The spectrum consists of discrete lines.
- 5) How many signals does the furfuraldehyde molecule have in the ¹H NMR spectra?
 - a. 2
- b. 3
- c. 4
- d. 5
- 6) Which of the following method is used for obtaining sharp line solid-state NMR?
 - a. Incoherent averaging
- b. Dipolar decoupling
- c. Dipolar interactions
- d. Quadrupolar interactions
- 7) The chemical shift value of CDCl₃ in ¹³C-NMR spectra is obtained at...

	8)	Which of the	following is an exar	nple of HOMO-corr	elation spectroscopy?	
		а. НМВС	b. HMQC	c. INADEQUATI	d. ¹³ C- ¹ H-COSY	
Q-1	(B)			ed. All questions a	ire compulsory	[16]
	1)		1 CO2 is IR inactive?			-
	2)			equency of the nitro	o functional group.	
	3)	What is the ar		d 011 11	9 4	
	4) 5)	What is the er		o the -OH stretchin	g vibration of cyclohexanol?	
	6)		s aw: s of chromophoric g	Traune		
	7)		or enromophoric s perchromic effect.	groups,		
	8)	* *	ne absorbs at 280 i	nm (ε = 13,500) but	t trans-stilbene absorbs at	
	9)	-	iples of NMR inacti	ve nuclei.		
	10)		signals are obt		H-NMR spectrum of 1,2-	
	11)	Which is the in	nternal reference u	sed for the sample s	scanned in D2O in NMR?	
	12)		otation for nitropr			
	13)	What is the di	fference between H	MQC and HMBC?		
	14)		nction of Fourier T			
	15)				it in ¹³ C-NMR spectra.	
	16)	What informat	tion can be gained l	by DEPT-135?		
Q-2			Seven from the fol	_		[14]
	1)			nyl stretching in cyc	clic ketone?	
	2)		ling vibrations in IF	• • •	N N 0	
	3) 4)			ble spectra of pyric B-band of benzene		
	1) 5)	-	laxation processes in		,	
	6)		nt chemical shift equ		otation in the ¹ H-NMR spectra	
	7)			icose can be differe	ntiated by NMR	
	8)	What are the di	fferences between H	MQC and HETCOR	! ?	
	9)				pare to ¹ H-NMR spectra?	
Q-3		Answer the fo	llowing.			[08]
	A)	•	•	up frequencies in tl	he IR spectra of poly(methyl	[06]
			and polyvinyl alcol			
	B)	What are the fa	actors affecting the	theoretical number	r of IR bands?	[02]

a. 77.0 δ ppm b. 67.0 δ ppm c. 39.7 δ ppm d. 118.3 δ ppm

		OR	
Q-3		Answer the following.	[08]
	A)	Write a note on applications of vibrational spectroscopy in polymer chemistry.	[06]
	B)	Give brief about characteristic group frequencies in the IR spectra of	[02]
		poly(acrylonitrile).	
Q-4		Answer the following.	[08]
·	A)	Write a note on electronic transition in UV-visible spectroscopy.	[05]
	B)	Calculate the λmax value of the following molecule.	[03]
			[03]
		OR	
Q-4		Answer the following.	[08]
	A)	How solvent polarity affects the UV-visible spectra of conjugated diene and α,β -	[05]
		unsaturated carbonyl compounds?	
	B)	Calculate the \(\lambda \) max value of the following molecule.	[03]
Q-5		Answer the following.	[08]
•	A)	How tacticity of poly(methyl methacrylate) can be distinguished by NMR?	[06]
	B)	Why the ¹ H-NMR spectrum of DMSO shows separate signals for two methyl	[02]
		groups at room temperature?	
		OR	
Q-5.		Answer the following.	[80]
	A)	Explain different methods for simplification of complex NMR spectra.	[06]
	B)	What information can be gained by ¹ H-NMR of polymers with small line width signals?	[02]
		aiglidia:	
Q-6		Answer the following.	[08]
	A)	Sketch ${}^{1}\text{H}{}^{-1}\text{H}$ COSY of m -dinitrobenzene by taking approximate δ values.	[04]
	B)	Calculate chemical shift values for C atoms of o-chloroaniline.	[04]
		OR	
Q-6		Answer the following.	[80]
	A)	Sketch $^{13}\text{C-}^{1}\text{H}$ HETCOR spectra of butanoic acid by taking approximate δ values.	[04]
	B).	Calculate chemical shift values for C atoms of 2,2-dimethyl butane.	[04]

Table 5.1 The ¹³C Shift Parameters in Some Linear and Branched Hydrocarbons

Table 5.3 Incremental Substituent Effects (ppm) on Replacement of H by Y in Alkanes. Y is Terminal or Internal* (+ 1, ft, - right)

Terminal

β Internal

β

¹³ C Atoms	Shift (ppm) (A)
α	+9.1
β	+9.4
	−2.5
$oldsymbol{\gamma}{\delta}$	+0.3
1° (3°)"	-1.1
1° (4°)a	-3.4
2° (3°)"	-2.5
2° (4°)	-7.2
3° (2°)	-3.7
3° (3°)	-9.5
4° (1°)	-1.5

	Y	Terminal	Internal	Terminal	Internal		
	CH ₃	+ 9	+ 6	+ 10	+ 8	-2	
	CH=CH ₂	+20		+ 6		-0.5	
	C≡CH	+ 4.5		+ 5.5		-3.5	
	COOH	+21	+ 16	+ 3	+ 2	-2	
	COO-	+25	+20	+ 5	+ 3	-2	
	COOR	+20	+17	+ 3	+ 2	-2	
	COCI	+33	+ 28		+ 2		
	CONH,	+ 22		+ 2.5		0.5	
	COR -	+ 30	+ 24	÷ }	+ [- 2	
	CHO	+31		- 8		- 2	
	Phenyl	1.23	+17	+ 9	+ 7	- 2	
	OH '	+ 48	+ 41	+10	+ 8	~ 5	
	OR	+ 58	+ 51	+ 8	+ 5	- 4	
	OCOR	+ 51	+45	+ 6	+ 5	-3	
	NH,	+ 29	+ 24	+13	+10	-5	
	NH ₃ ^	+ 26	+24	+ 8	+ 6	-5	
	NHR	+37	+31	+ 8	+ 6	-4	
	NR,	+42		+ 6		-3	
	NR ₃ +	+31		+ 5		-7	
	NO ₂	+63	+ 57	+ 4	+ 4		
	CN	+ 4	+ 1	+ 3	+ 3	-3	
	SH	+11	+ 11	+12	+ 11	- 4	
	SR	+20		+ 7		-3	
	F	+68	+ 63	+ 9	+ 6	-4	
	Cl	+31	+ 32	+11	+10	-4	
	Вг	+20	+25	+11	+ 10	-3	
	Ī	- 6	+ 4	+11	+12	-1	

	٧,,				
Compound	C-1	C-2	C-3	C-4	C-
Methane	- 2.3				
Ethane	5.7				
Propane	15.8	16.3	15.8		
Butane	13.4	25.2	25.2		
Pentane	13.9	22.8	34.7	22.8	13,
Hexane	14.1	23.1	32.2	32.2	23.
Heptane	14.1	23.2	32.6	29.7	32.
Octane	14.2	23.2	32.6	29.9	29.
Nonane	14.2	23.3	32.6	30.0	30.
Decane	14.2	23.2	32.6	31.1	30.
Isobutane	24.5	25.4			
Isopentane	22.2	31.1	32.0	11.7	
Isohexane	22.7	28.0	42.0	20.9	14.
Neopentane	31.7	28.1			
2,2-Dimethylbutane	29.1	30.6	36.9	8.9	
3-Methylpentane	time 14.1 23.1 3 ane 14.1 23.2 3 ane 14.2 23.2 3 ane 14.2 23.3 3 ane 14.2 23.2	36.9	(18.8,		
				3-CH	3)
2,3-Dimethylbutane	19.5	34.3			••
2,2,3-Trimethylbutane	27.4	33.1	38.3	16.1	
2,3-Dimethylpentane	7.0	25.3	36.3	(14.6,	
				3-CH	3)
3-Methylpentane 2,3-Dimethylbutane 2,2,3-Trimethylbutane 2,3-Dimethylpentane	19.5 27.4	34.3 33.1	38.3	3-CH 16.1 (14.6,	••

TABLE 7.12 EMPIRICAL RULES FOR BENZOYL DERIVATIVES

0		
Parent chromophore:	R	
R = alkyl or ring resultie		246
R = H		250
R = OH or Oalkyl		230
Increment for each substituent:		
-Alkyl or ring residue	o, m	3
	p	10
—OH, —OCH ₃ , or —Oalkyl	o, m	. 7
	p	25
-0-	ø	- 11
	TH.	20
	p	78
—Ci	θ , m	0
	p	10
Br	0, 111	2
	P	15
NH₂	o, m	13
*.	P	58
NICOCH ₃	o, m	20
hutah	P	45
NHCH ₃	P	73
N(CH ₃) ₂	o, m	20
	P	85

TABLE 7.7
EMPIRICAL RULES FOR ENONES

-1	EIN INICAL ROLLS TOR ENOUGH		
	β α (-0 β-C=C-C-0	δ γ β α δ-C-C-C-C-C	_{:=
	Base values:		
	Six-membered ring or acyclic parent enane	= 215	Biff
	Five-membered ring parent come	- 302	nn
	Acyclic dienone	= 245	nn
	Increments for:		
- 1	Double-bond-extending conjugation		30
	Alkyl group or ring residue	α	10
		p	12
- 1	t e	rand higher	18
-	Potar groupings:		
-	-OH	и	35
		ii ii	30
ſ		8	50
	-ococn,	$u.\beta.\delta$	6
	-OCH ₃	α	35
		β	30
		7	17
- 1		S	31
ı	-CI	a	15
-		β	12
Ī	-Br	4	
		β	30
	-NR ₂	β	95
	Execyclic double bond		5
-	Homocyclic dieno component		30

Empirical rules for diene

Base value for homo-annular diene	253nm	
Base value for hetero-annular diene Increment for:	214nm	
 Double bond extending conjugation Alkyl substituent or ring residue Exocyclic double bond Polar groups (auxochrome): 	+30nm +5nm +5nm	
-OAc	+0nm	
-OR -SR -Cl, -Br	+6nm +30nm +5nm	
-NR2		

 TABLE 4.12
 Incremental Shifts of the Aromatic Carbon Atoms of Monosubstituted Benzenes (ppm from Benzene at 128.5 ppm). Carbon Atom of Substituents in parts per million from TMSⁿ

Substituent	C-1 (Attachment)	C-2	C-3	C-4	C of Substituent (ppm from TMS)
FI .	0.0	0.0	0.0	(1,()	V-VI-10-
CH ₃	9.3	0.7	0.1	2.0	21.5
CH ₂ CH ₃	15.6	0.5	0.0	2.6	29.2 (CH ₃), 15.8 (CH ₃)
CH(CHa)	20.1	< 2.0	0,0	2.5	34.4 (CH), 24.1 (CH ₀)
$C(CTL_i)$:	22.2	.4.4	ti 4	3.1	34.5 (C), 31.4 (CH ₃)
CH == CH =	9.1	2.4	0.2	0.5	137.1 (C10, 113.3 (C11.)
C≋€CH	5.8	6.9	0.1	0.4	84.0 (C), 77.8 (CH)
C ₆ H,	12.1	- 1.×	··· O, 1	1.6	(2)
CH ₂ OH	13,3	0.8	0,6	0.4	64.5
СН ₂ О(С≔О)СН ₄	7.7	~ 0.0	~0,0	~-0.0	20.7 (CH ₄), 66.1 (CH ₂), 170.5 (C≠−O
OH	26.6	-12.7	1.6	-7.3	=== (==================================
OCH,	31.4	~ 14,4	1.0	7.7	54.1
OC ₆ H ₅	29.0	·· 9,4	1.6	-5.3	
$O(C=O)CH_3$	72.4	7.1	-0.4	-3.2	23.9 (CH ₃), 169.7 (C=O)
(C=O)H	8.2	1.2	0.6	5.8	192
(C∞O)CH ₃	7,8	-0.4	-0.4	2.8	24.6 (CH ₃), 195.7 (C-O)
$(C \rightleftharpoons O)C_6H_5$	9.1	1.5	0.2	3.8	196.4 (C=O)
(C≔O)F ₃	-5.6	1.8	0.7	6,7	. , ,
(C=O)OH	2,9	1.3	0.4	4.3	168
(C==O)OCH ₃	2.0	1.2	-0.1	4.8	$51.0 (CH_3), 166.8 (C=O)$
(CO)CI	4.6	2.9	0.6	7.0	168,5
$(C = O)NH_2$	5.0	1.2	0.0	3.4	
C≡N	~16	3.6	0.6	4.3	119.5
NH ₁	19.2	~12.4	1.3	-9.5	
$N(CH_3)_2$	22.4	-15.7	. 0.8	-11.8	40.3