SEAT No.

No. of printed pages: 4

口737

Sardar Patel University Examination, January-2021

M.Sc. (Inorganic Chemistry) Semester-III
Spectroscopy-I (PS03CINC21)
1st January 2021 (Friday)
Time: 10.00 am to 12.00 noon

Note: Numbers at the right show full m	narks. Total Marks: 70
Q.1 [A]. Answer the followings:	[8]
1) When radiations with frequency	are absorbed, molecular rotation takes place
in the substance.	-
(a) less than 100 cm ⁻¹	(b) less than 1000 cm ⁻¹
(c) 100 cm ⁻¹	(d) 1000 cm ⁻¹
2) Which of the following electronic tran	sitions has lowest energy?
(a) $\sigma \rightarrow \sigma^*$	(b) n → σ*
(c) π→π *	(d) $n \rightarrow \pi^*$
3) The difference in energies (ΔE) of two	spin states of a proton depends on
(a) atomic mass	(b) number of protons
(c) strength of magnetic field	(d) number of protons and strength of magnetic field
4) A small peak at 7.26 ppm for CDCl ₃ so	olvent in ¹ H NMR is due to
(a) deuterium of CDCl ₃ ,	(b) proton of CHCl₃ impurity,
(c) moisture present in CDCl ₃	(d) acidic impurities
5) For CH ₃ °, the number of lines in EPR	spectrum is
(a) one	(b) two
(c) three	(d) four
6) The value of g_e for a free electron is 2.	0023. The value of g _e in ionic crystals.
(a) is increased	(b) is reduced
(c) remains unchanged	(d) depends on free electrons availability
	al will be easiest in which of the following molecules?
(a) C_2H_6	(b) C_2H_4
(c) C_2H_5 -NH ₂	(d) All of the above
	ollowing gases leads to softest ionization of a molecule?
(a) CH ₄	(b) NH ₃
(c) H ₂	(d) $i-C_4H_{10}$
Q.1 [B]. Answer the followings:	[16]
	e conjugation in various molecules. State true or false.
	ling electrons, which when attached to a chromophore,
alters the wavelength and intensity of	•
•	CO_2 and SO_2 is different. State true or false.
5) The aromatic protons are deshielded. Sta	to true of faise.

- 6) Write the number of multiplets for ²⁹Si signal in proton coupled ²⁹Si NMR of tetramethylsilane.
- 7) Write the multiplicity for ¹³C signal of CDCl₃.
- 8) Write the number of lines in EPR spectrum of H_2^{+} .
- 9) Write the number of EPR lines for CH₂-OH radical.
- 10) The solvents with high dielectric constant are suitable for EPR study. State true or false.
- 11) Write the number of lines in EPR spectrum of a molecule having an unpaired electron and four protons.
- 12) Write the ratio of line intensity in EPR spectrum of para-benzosemiquinone anion radical.
- 13) In Electronspray Ionization technique, what is the role of nebulizing gas?
- 14) In Magnetic Sector Mass Analyser, the resolution can be increased by subjecting the ions to
- 15) Draw the structure of fragments of methyl 2-methyl benzoate molecule based on ortho effect reaction.
- 16) How many peaks will appear in the Mass spectrum of Cl₂?

Q.2. Answer any <u>SEVEN</u> of the followings:

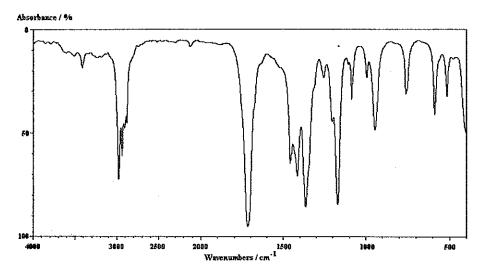
[14]

- 1) Explain. Chromophores and Auxochromes.
- 2) Calculate the frequency associated with -C=O vibration.
- 3) In the ¹H NMR, the protons of acetylene are shielded. Explain.
- 4) What are exchangeable protons? Give examples.
- 5) What is proton decoupled ¹³C NMR spectrum? Explain with an example.
- 6) The magnetogyric ratio for ^{1}H (γ_{H}) and for ^{15}N (γ_{N}) are 26,753 and -2,712, respectively. Calculate the maximum NOE enhancement for ^{15}N .
- 7) Electron Zeeman splitting is higher than nuclear Zeeman splitting. Explain.
- 8) Give two Ionization methods with typical analytes, sample introduction, mass range and Ionization.
- 9) What is Mc-Lafferty Rearrangement? Explain with suitable example.

Q.3.[A] Calculate the λ_{max} values for following molecules.

[4]

[B] Explain the IR spectra of aldehyde, ketone and carboxylic acid.


[4]

Or

[A] Explain various types of electronic transitions in UV spectroscopy in detail.

4

[B] Identify the molecule with molecular formula C_4H_8O whose IR spectrum is provided with proper justification.

Q.4.[A] Discuss the vicinal and geminal Karplus correlations.

[4]

[4]

[B] Calculate ¹³C chemical shifts (δ; ppm) for *n*-butane and *iso*-butane using the data (¹³C shift parameters in hydrocarbons) given in the following table. [4]

¹³ C Atoms	Shift (ppm) (A)
α	9.1
β	9.4
γ	-2.5
δ	0.3
ϵ	0.1
1°(3°)a	-1,1
1°(4°)°	-3.4
2°(3°)a	-2.5
2°(4°)	-7.2
3°(2°)	-3.7
3°(3°)	-9,5
4°(1°)	-1.5
4°(2°)	-8.4

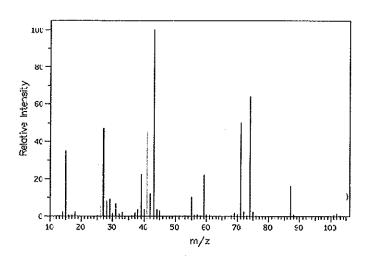
Or

- [A] What is Nuclear Overhauser Effect (NOE)? Explain with suitable examples.
- [B] Discuss DEPT (distortion enhancement by polarization transfer) spectroscopic technique with a suitable example. [4]
- Q.5.[A] Discuss electron-nuclear hyperfine interaction giving example of 2,5-di-tert-semiquinone (2,5-DTBSQ) anion radical? [4]

[B] What is gyromagnetic ratio (g_c)? Discuss different factors which affect g_e.

Or

[A] Explain super-hyperfine interaction in EPR spectra giving examples.

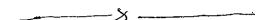

[4]

[4]

- [B] Discuss the application of EPR spectroscopy for characterization of free radical reaction intermediates giving example of reactions. [4]
- Q.6.[A] Explain the Electronspray Ionization technique in Mass Spectrometry.

[4]

[B] Following mass spectrum is of methyl butyrate. Assign all the peaks with suitable fragments and fragmentation pattern. [4]


Or

[A] Explain the Magnetic Sector Mass Analyzer in detail.

[4]

[B] Describe the Chemical Ionization technique in Mass spectrometry.

[4]

