1.

No. of Printed Pages: 4

SARDAR PATEL UNIVERSITY

M. Sc. SEMESTER-II Examination Friday 26th October, 2018 10.00 A.M. To 01.00 P.M.

[Total Marks: 70] Topics in Physical Chemistry-II: PS02CCHE23

	N.B. Figures to the right of each of	of the question	indicate marks	*				
	Choose appropriate answer of the	following		[08]				
(i)	According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why not all collisions between reactant molecules lead to reaction? (1) The total energy of two colliding molecules is less than some minimum amount of energy							
	(2) Molecules cannot react with eac	(2) Molecules cannot react with each other unless a catalyst is present						
	(3) Molecules that are improperly o	riented during	collision will not react					
	(4) Solids cannot react with gases		(c) 4 vibrational most					
	(a) 1 & 3 (b) 1 & 2	(c) 1 & 4	(d) 2 & 3					
(ii)	The rate of reaction of spontaneous reaction is generally very slow. This is due to the fact that							
	(a) the equilibrium constant of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction is < 1 / The same approximation of the reaction o							
	(b) the activation energy of the reac	tion is large						
			clive the procedure to otherional moressing					
(iii)	The symmetry point group of the most stable geometry of the following molecule Cl(H)C=C=C(H)Cl is							
	(a) C_1 (b) C_{2v}	(c) C ₂	C_{2h}					
(iv)	A first-order reaction has a rate cor for the reaction to be 75 % complet		10 ⁻³ sec ⁻¹ . The time require	ed				
	(a) 95.8 s (b) 201 s	(c) 231	s (d) 462 s					

(v)	Which pairing of	molecule and poin	t group is correct	?		
	(a) CHCl ₃ , C _{3v}	(b) CH ₂ Cl ₂ , T _d	(c) CCl ₄ , D ₄	d (d) CCl ₂ Br ₂ , C _{2h}		
(vi)	Which one of the	following statemen	nts regarding V _{ma}	and K _M is false?		
	(a) V _{max} is the ma	ximum rate at whi	ch a particular en	zyme-catalyzed reaction		
	(b) K _M is the co	ncentration of sub	estrate at which	the rate of the reaction		
	(c) A small value	of K_M tells us that	an enzyme binds	strongly to its substrate		
î.	(d) A large value given substrate		t an enzyme show	ws little specificity for a		
(vii)	CO ₂ has					
	(a) stretching mod	es only				
	(b) 3 vibrational n	nodes	en e	en e		
	(c) 4 vibrational m	odes, 2 of which a	re degenerate	and the second		
	(d) an IR active sy	mmetric stretch	8	·		
(viii)	The number of de	grees of vibrationa	freedom possess	sed by CH ₄ is:		
	(a) 10	(b) 6	(c) 4	(d) 9		
	Attempt any SEV	EN of the followi	ng	en de la companya de	[14]	
1.	For a linear molec	ule with $\mathrm{C}_{\!\scriptscriptstyle \infty}$ axis sh	now that it belong	s to C _{∞v}		
2.	Give the procedure for determining the irreducible representations of the vibrational modes in non-linear molecules.					
3.		s of vibration of les with a neat diag		-dichlorothylene have?		
4.	Enlist the conditions for Orthogonality of a matrix and prove that $AA^T = E$ meets such condition.					
5.						
	Obtain the relation	$\ln \left(\frac{m}{m-x}\right) = (k_1 +$	k ₋₁) t	the state of the s		
6.		$\ln \left(\frac{m}{m-x}\right) = (k_1 + \frac{m}{m-x})$ temperature on enz	4.7	en e		

2.

	8.	Write about the objections to Hinshelwood theory.					
	9,	State the applications of stirred	d flow reactor.				
3.	[A]	What is relaxation time? Obta	in the relation τ	$= (k_1 + 2k_{-2})$	$(x_{\rm e})^{-1}$	[6]	
	[B]	What are Parallel reaction concentrations of A, B and C,				[6]	
	[B]	Explain how does an ionic stre	ength of a solution	on affect the	rates of reactions?	[6]	
4.	[A]	Discuss in detail about the coll	lision theory of t	oimolecular	reactions.	[6]	
	[B]	Discuss in detail the kinetic mereaction of Hydrogen-Bromine		ed in the ph	otochemical	[6]	
		. 0	OR				
	[B]	(i) Explain the conditions for the kinetic and thermodynamic control of				[3]	
		opposing reactions. (ii) The rate constant for second 25 °C and 1.64 × 10 ⁻⁴ dn energy and the pre-exponent	m³ mol¹ s⁻¹ at 4	10 °C. Calc	ulate the activation	[3]	
5.	[A] The character table for D ₅ point group is:						
	11	D_5 E $2C_5$		5σ _v		[6]	
		τ_1 1 1	1	1			
		τ_2 1 1	1	-1			
		τ_3 2 a	b	С			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	<u>f</u>			
		Deduce unknown values of a	to I.				
	[B]	Obtain the transformation matrix corresponding to σ_v , σ_v' and $\sigma_v^{"}$					
		OR					
	[B]	(i) For an orthogonal matrix show that C_2^+ and C_2^- are the same symmetry operations while $C_3^+ \& C_3^-$ are different symmetry operation.				[3]	
		(ii) For NH ₃ molecule prove that:					
		(a) $C_3^1 \times \sigma v_1 = \sigma v_2$ (b) ($C_3^1 \times \sigma v_2 = \sigma v_3$	(c) ($C_3^1 \times \sigma V_3 = \sigma V_1$		
			\bigcirc		1970	`	

Identify the point groups of the following: BF₄⁺, SF₄, XeF₄, NO₂

7.

- 6. [A] Give the symmetry enabled selection rules for Infrared spectra.
- [6]
- [B] Explain about the symmetries of normal modes of ethylene using group theory formulations.

[6]

OR

[B] NH₃ belongs to C_{3v} point group, considering the character table for the same prove that: (i) $\Gamma_{vib} = 2A_1 + 2E$ and (ii) $\Gamma_{int} = 2A_1 + 2E$

	C _{3v}	E	2C ₃ (z)	3σ _ν		
	A ₁ :	1	1	1	Z	$x^2 + y^2$, z^2
ĺ	A ₂	1	1	-1	R _z	
	Е	2	-1	0	(x,y)	(x^2-y^2, xy)
:	Mark.	M 1		a system and the	(R_x,R_y)	(xz, yz)

4