(24 & A-10) Seat No.:____

No. Printed pages:4

SARDAR PATEL UNIVERSITY M.Sc. (SEMESTER-II) EXAMINATION 2016

Saturday, 22nd October 10.00 a.m. to 01.00 p.m. CHEMISTRY: PS02CCHE01 (INORGANIC CHEMISTRY-II)

Note:-figures to the right indicate full marks.

Total marks: 70

Q.1. Answer the following:

- 8
- 1. Which of the following orbital is most destabilized in trigonal prismatic geometry?
 - a. dxz, dyz
 - b. dx^2-y^2
 - c. dxy
 - d. dz²
- 2. Which of the following system exhibits highly distorted octahedral structure?
 - a. low spin-d⁹
 - b. high spin-d⁵
 - c. low spin-d⁴
 - d. high spin-d⁶
- 3. Arrange the following term in decreasing order of the energy:
 - (i). ⁴F
 - (ii). ⁴G
 - (iii), ³[
 - (iv). 3H
 - a. $(iv) \ge (iii) \ge (i) \ge (ii)$
 - b. (iii) > (i) > (iv) > (ii)
 - $c. (ii) \ge (iv) \ge (i) \ge (iii)$
 - d. (ii) > (i) > (iii) > (iv)
- 4. The ground state for the [Fe(CN)₆]⁴ is:
 - a. ${}^{2}T_{2g}$
 - b. ${}^{1}A_{1R}$
 - c. $^3T_{1g}$
 - d. ${}^{2}E_{8}$

2

C PITOS

5. 6 .	Below Curie temperature substance behave like: a. Paramagnetic b. Antiferromagnetic c. Ferromagnetic d. Ferrimagnetic The correct order of effective magnetic moment value of the following coordination compounds is: (i) [Co(NH ₃) ₆] ²⁺ (ii) [Co(NH ₃) ₆] ³ (iii) [Cr(H ₂ O) ₆] ²⁺ (iv) [V(NH ₃) ₆] ³⁺	
	a. i < ii < iii < iv b. iv < iii < i c. ii < iv < i < iii d. iii < iv < i < ii	
7.	Which of the following lanthanides produce largest down-field shift?	
	a. Gd(fl) b. Tm(ll) c. Ho(ll) d. Tb(ll)	
8.	The number of pair of parallel spin for high-spin d8—configuration is:	
0.2	a. 9 b. 11 c. 10 d. 13	
Q.2. 1.	Attempt any <u>SEVEN</u> of the following: Explain the term point dipole with suitable example.	14
2. 3.	Why dose energy of t_{2g} orbital decrease by 4 Dq? Calculate the number of microstates for 2H and 4H terms.	
3. 4.	Give the crystal field terms for the ¹ G, ² D, ³ F, ⁴ P and ⁵ S terms.	
5.	What are the sources of paramagnetism?	
6. 7.	Explain the σ -overlap and π - overlap; Calculate the electron exchange energy for high-spin d^4 to d^7 - configurations.	
.8.	Calculate the number of pair of parallel spin for low-spin d ⁴ to d ⁷ -configurations.	
9.	Explain the aspects of spin pairing and cross over region.	
Q.3.A.	Derive the microstates for the $[V(H_2O)_6]^{31}$ complex. Find out the terms arising out	6
В.	of this configuration and indicate the order of increasing energy of the terms. Discuss the tetragonal distortion in octahedral complexes and explain the structure of $[Cr(H_2O)_6]^{2+}$ and $[Cu(NH_3)_6]^{2+}$ complexes.	6
	<u>OR</u>	

- **B.** Answer the following:
- 1. Differentiate splitting of d- orbitals in octahedral field and tetrahedral field.
- 2. Calculate the number of microstate for the following configurations and arrange them in decreasing order of energy. $(t_{2g})^2(e_g)^2 \ , (t_{2g})^3(e_g)^1 \ \text{and} \ (t_{2g})^4$

Q.4.A.	Explain the Loporte and spin selection rules. Calculate Nephelauxetic ratio, Racah parameter, covalent character, crystal field splitting energy and configuration interaction term for the $[\text{Co(NH}_3)_6]^{2+}$ complex. Given: $v_1 = 8,250 \text{ cm}^{-1}$, $v_2 = 15,950 \text{ cm}^{-1}$, $v_3 = 19,300 \text{ cm}^{-1}$ and B_6 for Co(II) = 971 cm ⁻¹ .	6
В. 1. 2.	Answer the following: Draw and explain the Orgel diagram for octahedral and tetrahedral Cr(III)-system. Draw and explain the Tanabe Sugano diagram for low-spin Fe(III) and low-spin Co(III) complexes.	6
	<u>OR</u>	
B. Q.5.A. B.	Explain the types of transitions in the following systems. (i) $[Mn(Br)_6]^{3-}$, (ii) $[Sc(H_2O)_6]^{2+}$, (iii) $[Co(H_2O)_6]^{3+}$, (iv) $[Fe(CN)_6]^{3-}$, (v) $[Mn(H_2O)_6]^{2+}$, (vi) $[Cr(H_2O)_6]^{3+}$. Derive the equation for diamagnetic susceptibility. Calculate the effective magnetic moment for $K_4[Fe(CN)_6]$ complex. Define the magnetic susceptibility and derive the Van Vleck equation for magnetic susceptibility. OR	6
В.	Answer the following:	
1.	Find out the diamagnetic susceptibility correction for bis(salicylidene)ethylenediamine and 4-methyl aniline. Given: $\chi_A \rightarrow C = -6.0 \times 10^6$ cgs units, $H = -2.93 \times 10^6$ cgs units, $O = -4.61 \times 10^{-6}$ cgs units, $O_2 = -7.95 \times 10^{-6}$ cgs units, $O_{CO} = -7.95 \times 10^{-6}$ cgs units, $O_{CO} = -7.95 \times 10^{-6}$ cgs units, $O_{CO} = -7.95 \times 10^{-6}$ cgs units and $O_{CO} = -7.95 \times 10^{-6}$ cgs units and $O_{CO} = -7.95 \times 10^{-6}$ cgs units and $O_{CO} = -7.95 \times 10^{-6}$ cgs units.	
2.	Explain ferrimagnetism and canting giving suitable examples.	

- 6
- 1. Calculate the value of spin-orbit coupling constant for d^1 to d^{10} systems. What will be the effect of spin orbit coupling on effective magnetic moment value of octahedral Ni(II) complex? Given: Dq = 890 cm⁻¹ and λ = 315 cm⁻¹.
- 2. Derive the term symbols and magnetic moment value for the Nd(III) (z = 60), Sm(III) (z = 62) and Cf(III) (z = 98).
- B. Answer the following:

6

- 1. Give an account of the electronic spectra of the actinide complexes.
- 2. State and prove the Lande interval rule.

<u>OR</u>

- B. Answer the following:
- 1. Use the orbital rotation and transformation model and predict the orbital contribution for the following complexes giving proper justification.
 - (i) $[V(H_2O)_6]^{3+}$
 - (ii) $[Co(NH_3)_6]^{21}$
 - (iii) $[Mn(H_2O)_6]^{21}$
- 2. Show that complexes of europium(III) and americium(III) are diamagnetic even though both having six unpaired electrons.

