No. Of Printed Pages: 2 SARDAR PATEL UNIVERSITY

M.Sc. (SEMESTER-II) EXAMINATION Tuesday, 5th April, 2016 10:30 A.M. to 01:30 P.M. CHEMISTRY: PS02CCHE01 (INORGANIC CHEMISTRY-II)

No	ote:-figures to the right	indicate full mark	s:	Total marks: 70		
Q.1.	Answer the following	[8]				
1.	Which theory treats th			as point charges?		
2		(b) CFT	(c) VBT	(d) MOT		
2.	The energy order in a tetragonal compressio (a) $dz^2 > dx^2-y^2 > dxz$, $dyz > dxy$		ion along the Z-a (b) $dz^2 > dx^2 - y^2 >$	n along the Z-axis is: (b) $dz^2 > dx^2 - y^2 > dxy > dxz$, dyz		
	(c) dz2 < dx2-y2 < dxz, dyz < dxy		(d) $dz^2 < dx^2 - y^2 < dxy < dxz, dyz$			
3.	For ionic complex β -		(u)			
		(b) 0.5	(c) 1	(d) none		
4.	The energy of ³ A ₂ g sta	` /	(0) 1	(d) Hone		
	(a) 6 Dq		(c) -6Dq	(d) -12Dq		
5.	Curies law holds for a		, ,			
		(b) ≤	(c) >	(d) ≥		
6.	The effective magnetic moment value of $[Ni(H_2O)_6]^{2+}$ is					
		(b) 3.87 B.M.	(c) Zero B.M.			
7.	When, the	. ,	` '			
		(b) Δ < P				
8.						
	The Critical 10Dq value (a) [Fe(CN) ₆] ⁴⁻	(b) $[Ni(H_2O)_6]^{2+}$	(c) [Mn(H ₂ O) ₆	$[Co(H_2O)_6]^{2+}$		
Q.2.	Attempt any SEVEN	of the following:		[1.4]		
1.			V) complexes	[14]		
2.	Splitting of d-orbital's in oxo-vanadium (IV) complexes. Explain the σ-overlap and π- overlap.					
3.	Prove that $15B = v_2 + v_3 - 3 v_1$ for octahedral $[Cr(H_2O)_6]^{3+}$ complex.					
4.	Explain Orgel diagram for d^4 and d^6 – system.					
5.	Explain the magnetic susceptibility and volume susceptibility.					
6.	Explain 90° super exchange for Cr(III).					
7.	The term symbols for d^3 and d^7 – configuration is 4F , Explain.					
8.	Explain: Europium (III) & Terbium (III) both contain 6 unpaired electrons even though					
	one having B.M value					
9.	-			sorption spectra of Lanthanide		
	complexes.					
Q. 3.	[A] Derive the microst	ates for the d ² comp	lay Find out the	tarms origina from it and		
Q. J.	[A] Derive the microstates for the d ² complex. Find out the terms arising from it and indicate the order of increasing energy of these terms. [6]					
	[B] Give the difference between Spectrochemical series and Nephelauxetic series and arrange the following complexes in increasing value of 10 Dq and decreases value of 15 I					
	value giving proper just $(I)[Co(H_2O)_6]^{2+}$	stifications. (II) [Co(NH	. \ .1 ³⁺	(III) [Co(Oy)] ⁴ :		
	$(I)[Co(H_2O)_6]$ $(IV)[Co(en)_3]^{2+}$	(II) [Co(NH (V)[Co(NCS		(III) $[Co(Ox)_3]^4$ (VI) $[Co(Br)_6]^4$		
	(1 4)[CO(611)3]	(V)[CO(NCS)6] O r	(VI)[CO(DI)6]		
			O1			

	[B] Answer the following:	[6]		
	(I) Explain the splitting of d-orbital's in trigonal bipyramidal geometry.	[0]		
	(II) Differentiate splitting of d-orbitals in octahedral field and tetrahedral field.			
Q.4.	[A] Explain the correlation diagram for d ² system.			
	[B]Explain T.S. diagram for $[Mn(H_2O)_6]^{2+}$ complex and calculate the value of electronic parameters, % β , β , % Ionic character and % Covalent character. [Given: $v_1 = 18600 \text{ cm}^{-1}$, $v_2 = 22900 \text{ cm}^{-1}$, $v_3 = 24500 \text{ cm}^{-1}$ and $v_4 = 25150 \text{ cm}^{-1}$ B ₀ for Mn(II) = 860 cm ⁻¹]			
	Or			
	[B] Answer the following:			
	1. Why Orgel diagram for d ² & d ⁷ and d ³ & d ⁸ are identical.			
	2. Why Orgel diagram for d ⁹ octahedral configuration is inverse of d ¹ configuration			
Q.5.	Answer the following:	[6]		
	[A] Explain first order Zeeman effect and second order Zeeman effect. Derive Van-Vleck equation for the magnetic susceptibility of the coordination compounds.			
	[B] Derive the diamagnetic susceptibility equation and find out the diamagnetic correction $\chi_{\text{dia(corr.)}}$ for bis(salicylidine)ethylene diamine. [Given: χ_c = -6.0x10 ⁻⁶ cgs, χ_{H} = -2.93x10 ⁻⁶ cgs, χ_{O} = -4.61x10 ⁻⁶ cgs, χ_{Nchain} = -5.57x10 ⁻⁶ cgs, $\lambda_{\text{C}=\text{N}}$ = 8.15x10 ⁻⁶ cgs, λ_{c} =-0.24x10 ⁻⁶ cgs.] Or	[6]		
t.	[B] Answers the following:	[2]		
	 Explain the types of Antiferromagnetism. Explain the sources of diamagnetism. 	[6]		
Q.6.	[A] Explain the conditions under which the cross-over region occurs in detail.	[6]		
	[B] Explain the spin orbit coupling on A, E and T terms. Calculate the effect of sp orbit coupling on effective magnetic moment value of complex $[Ni(H_2O)_6]^{2+}$. [Given: λ = -315 cm ⁻¹ and 10Dq=9000 cm ⁻¹] Or	in [6]		
	[B] Answers the following:	[2]		
	1. State and prove the Lande interval rule.	[6]		
	2. Uses of Lanthanides compounds as shift reagent.			