| Seat | No.: | .5 | |------|---------------|----| | ~~~~ | I & CALLESTON | | No. of printed pages: $\underline{\theta3}$ (08) ## SARDAR PATEL UNIVERSITY M. Sc. (Semester – IV) Examination Thursday, 27th October 2016 2.00 p.m. to 5.00 p.m. PS04CANC02: Electro analytical Methods | | Ü | to the right indicate full marks Total Marks: 70 | | | | | | |---|---|--|--|--|--|--|--| | - | | he correct answer (Only Code) | | | | | | | | [1] | Which one of the following electrode is not selective towards H ⁺ ions? | | | | | | | | | (a) Glass electrode, (b) Quinhydrone electrode, (c) Hydrogen gas electrode, (d) Calomel electrode | | | | | | | | [2] | 10^{-6} M HCl is diluted to 100 times. Its P^H is | | | | | | | | [3] | (a) 6.0 (b) 8.0 (c) 6.95 (d) 9.5 Faraday equals to | | | | | | | | [4] | (a) e × N (b) e / N (c) N/e (d) e × V In Polarography, which salt is widely used as a supporting electrolyte for aqueous media; | | | | | | | | (a) KNO ₃ , (b) KCl, (c) KMnO ₄ (d) K ₂ Cr ₂ O ₇ [5] Standard free energy change is | | | | | | | | | | | | | | | | | | - | (a) nEF (b) — nEF (c) $nE^{0}F$ (d) — $nE^{0}F$ | | | | | | | | [6] Quality of deposits are improved by (a) knocking (b) stirring (c) Heating (d) cooling [7] At 90°C, pure water has H₃O⁺ = 10⁻⁶ moles/lit. The value of K_w at 90°C in | (a) 10^{-6} (b) 10^{-14} (c) 10^{-12} (d) 10^{-8} | | | | | | | | [8] | Specific resistance is | | | | | | | | | (a) $\rho = R \frac{a}{l}$ (b) $\rho = R \frac{l}{a}$ (c) $\rho = \frac{a}{Rl}$ (d) $\rho = \frac{la}{R}$ | | | | | | | Q.2 | 2 Answer the following in short; (ANY SEVEN) | | | |-----|--|--|--------------| | | (a) Give detailed classification of electro analytical methods. | | | | | (b) | What will be the value of Ecell when Ag and Cu electrodes with unit activities | | | | are in contact? $[E^0_{Cu}]_{Cu} = 0.337 \text{ volt}, E^0_{Ag/Ag+} = 0.7999 \text{ volt.}]$ (c) Why calibration of glass electrode is needed? | | | | | (d) | State advantages and disadvantages of hydrogen electrode. | - | | | (e) | Define: Volt, Formal potential, Equivalent conductance, & limiting current, | | | | (g)
(h) | Discuss Hydrogen-Oxygen coulometer. State advantages and disadvantages of DME. | | | | (i) | When a conductance cell was filled with 0.01 M KCl solution, whose specific conductance is 0.001409 mho/cm, it has resistance of 161.80hm. When filled with 0.005MNaOH it has resistance of 1900hm. | | | Q.3 | [a] | Calculate cell constant θ , specific conductance of NaOH solution.
Deduce the equation: $E = E^0 - \frac{0.0591}{n} \log K$, for the general reaction | (06) | | | [b] | aA+bB | (03) | | | [b] | (i) State applications of ion selective electrodes. δρ (i) The cell in which following reaction occurs.2Fe²⁺ +2I →2Fe³⁺+I₂ (E⁰cell =0.236v at 298⁰K). Calculate ΔG & Kc for the cell reaction | (03)
(03) | | Q.4 | [a] | (R = 1.982 cal/deg/mole. F=96487 & E = 0) (ii) Deduce the relation: P^H = P^{Kw} — P^{Kb} for a weak base. [i] Differentiate between Direct potentiometry and Potentiometric titrations and state advantages of Potentiometric titrations overordinary titrations. | (03)
(03) | | | [b] | [ii] Oxidation potential of Pt/Cl ₂ /Cl ⁻ & Pt/I ₂ /l ⁻ are -1.36v & -0.54v respectively. Show that Cl ⁻ ion can oxidizes l ⁻ to I and calculate K. | (03) | | | [D] | Answer ANY TWO of the followings: | (06) | | | | [i] Discuss physical characteristics of metal deposits. [ii] Calculate time needed for a constant current of 0.96A to deposited 0.5 gms of CO(II) as elemental CO on the surface of a cathode. (Molecular | | | | | Mass of CO is 58.13, F = 96500) [iii] Discuss constant potential electrolysis. | | | | - | [iv] State advantages of coulometric titrations. | | - Q.5 [a] Give advantages and disadvantages of high frequency conductometry. (06) - [b] Discuss various types of conductometric titrations. (06) ## <u>OR</u> - [b] Discuss Kohlrausch's law of independent migration of ions and its applications. (06) - Q.6 [a] State advantages of polarography technique and obtain the equation for Half wave potential: $E_{1/2} = E^0 + \frac{0.0591}{n} \log \left[\frac{Dred}{Doxi} \right]^{1/2}$. - [b] Answer ANY TWO from the followings: (06) - [i] Discuss Current sampled and pulse polarography. - [ii] Write a note on diffusion current. - [iii] Enlist advantages and disadvantages of amperometric titration. - [iv] The following data were collected for three dropping mercury electrodes. Complete the data for electrode A & C. | DME | A | В | C | |-----------------------|-------|------|------| | Flow rate, mg/s | 0.982 | 3.92 | 6.96 | | Drop time,(Sec) | 6.53 | 2.36 | 1.37 | | $I_d/C, \mu A/m.mole$ | ? | 4.86 | ? | ◎ ⊕ ☆ ⊕ ⊚