Seat	No.:	.5
~~~~	I & CALLESTON	

No. of printed pages:  $\underline{\theta3}$ 

(08)

## SARDAR PATEL UNIVERSITY

M. Sc. (Semester – IV) Examination
Thursday, 27th October 2016
2.00 p.m. to 5.00 p.m.
PS04CANC02: Electro analytical Methods

	Ü	to the right indicate full marks  Total Marks: 70					
-		he correct answer ( Only Code)					
	[1]	Which one of the following electrode is not selective towards H ⁺ ions?					
		(a) Glass electrode, (b) Quinhydrone electrode, (c) Hydrogen gas electrode, (d) Calomel electrode					
	[2]	$10^{-6}$ M HCl is diluted to 100 times. Its $P^H$ is					
	[3]	(a) 6.0 (b) 8.0 (c) 6.95 (d) 9.5 Faraday equals to					
	[4]	(a) e × N (b) e / N (c) N/e (d) e × V  In Polarography, which salt is widely used as a supporting electrolyte for aqueous media;					
	(a) KNO ₃ , (b) KCl, (c) KMnO ₄ (d) K ₂ Cr ₂ O ₇ [5] Standard free energy change is						
	-	(a) nEF (b) — nEF (c) $nE^{0}F$ (d) — $nE^{0}F$					
	<ul> <li>[6] Quality of deposits are improved by</li> <li>(a) knocking (b) stirring (c) Heating (d) cooling</li> <li>[7] At 90°C, pure water has H₃O⁺ = 10⁻⁶ moles/lit. The value of K_w at 90°C in</li> </ul>						
		(a) $10^{-6}$ (b) $10^{-14}$ (c) $10^{-12}$ (d) $10^{-8}$					
	[8]	Specific resistance is					
		(a) $\rho = R \frac{a}{l}$ (b) $\rho = R \frac{l}{a}$ (c) $\rho = \frac{a}{Rl}$ (d) $\rho = \frac{la}{R}$					

Q.2	2 Answer the following in short; (ANY SEVEN)		
	(a) Give detailed classification of electro analytical methods.		
	(b)	What will be the value of Ecell when Ag and Cu electrodes with unit activities	
	are in contact? $[E^0_{Cu}]_{Cu} = 0.337 \text{ volt}, E^0_{Ag/Ag+} = 0.7999 \text{ volt.}]$ (c) Why calibration of glass electrode is needed?		
	(d)	State advantages and disadvantages of hydrogen electrode.	-
	(e)	Define: Volt, Formal potential, Equivalent conductance, & limiting current,	
	(g) (h)	Discuss Hydrogen-Oxygen coulometer. State advantages and disadvantages of DME.	
	(i)	When a conductance cell was filled with 0.01 M KCl solution, whose specific conductance is 0.001409 mho/cm, it has resistance of 161.80hm.  When filled with 0.005MNaOH it has resistance of 1900hm.	
Q.3	[ a ]	Calculate cell constant $\theta$ , specific conductance of NaOH solution. Deduce the equation: $E = E^0 - \frac{0.0591}{n} \log K$ , for the general reaction	(06)
	[b]	<ul> <li>aA+bB</li></ul>	(03)
	[ b ]	<ul> <li>(i) State applications of ion selective electrodes. δρ</li> <li>(i) The cell in which following reaction occurs.2Fe²⁺ +2I →2Fe³⁺+I₂</li> <li>(E⁰cell =0.236v at 298⁰K). Calculate ΔG &amp; Kc for the cell reaction</li> </ul>	(03) (03)
Q.4	[ a ]	<ul> <li>(R = 1.982 cal/deg/mole. F=96487 &amp; E = 0)</li> <li>(ii) Deduce the relation: P^H = P^{Kw} — P^{Kb} for a weak base.</li> <li>[i] Differentiate between Direct potentiometry and Potentiometric titrations and state advantages of Potentiometric titrations overordinary titrations.</li> </ul>	(03) (03)
	[ b ]	[ii] Oxidation potential of Pt/Cl ₂ /Cl ⁻ & Pt/I ₂ /l ⁻ are -1.36v & -0.54v respectively. Show that Cl ⁻ ion can oxidizes l ⁻ to I and calculate K.	(03)
	[ D ]	Answer ANY TWO of the followings:	(06)
		<ul> <li>[i] Discuss physical characteristics of metal deposits.</li> <li>[ii] Calculate time needed for a constant current of 0.96A to deposited 0.5 gms of CO(II) as elemental CO on the surface of a cathode. (Molecular</li> </ul>	
		Mass of CO is 58.13, F = 96500) [iii] Discuss constant potential electrolysis.	
	-	[ iv ] State advantages of coulometric titrations.	

- Q.5 [a] Give advantages and disadvantages of high frequency conductometry. (06)
  - [b] Discuss various types of conductometric titrations. (06)

## <u>OR</u>

- [b] Discuss Kohlrausch's law of independent migration of ions and its applications. (06)
- Q.6 [a] State advantages of polarography technique and obtain the equation for Half wave potential:  $E_{1/2} = E^0 + \frac{0.0591}{n} \log \left[ \frac{Dred}{Doxi} \right]^{1/2}$ .
  - [b] Answer ANY TWO from the followings: (06)
    - [i] Discuss Current sampled and pulse polarography.
    - [ii] Write a note on diffusion current.
    - [iii] Enlist advantages and disadvantages of amperometric titration.
    - [ iv ] The following data were collected for three dropping mercury electrodes. Complete the data for electrode A & C.

DME	A	В	C
Flow rate, mg/s	0.982	3.92	6.96
Drop time,(Sec)	6.53	2.36	1.37
$I_d/C, \mu A/m.mole$	?	4.86	?

◎ ⊕ ☆ ⊕ ⊚



