50

No. of Printed Pages: 2

(109) SARDAR PATEL UNIVERSITY

M.Sc. (Organic Chemistry) Examination (CBCS) IVth Semester March-2019

Saturday, Date: 23.03.2019

Time: 2.00 p.m. to 5.00 p.m., Paper: PS04CORC23

Subject: Stereochemistry of organic compounds, Max. Marks: 70

N B · il	Figures	to the right indicate marks which are carried by each question.	
			[08]
Q.1	• • • • • • • • • • • • • • • • • • • •	Answer by highlighting the correct option	[00]
	i)	A most stable conformer of <i>n</i> -pentane will be	
		a) (-sc, +sc) b) (+sc,+sc)	
		c) (±ap, ±ap) d) (±ap,+sc)	
	ii)	Axial chirality will be shown by b) BINOLs	
		a) DD1	
		c) (s)-Valine d) (s)-Proline	
	iii)	Enantiomers differ in their	
		a) Solubility b) Interaction with achiral environment	
		c) Melting point d) Interaction with chiral environment	
	iv)	Lowest energy conformer of cyclohexane of the following will be	
		a) Chair form b) Boat form	
		c) Twist-boat form d) Half-chair form	
	v)	A ^{1,3} -Strain will be observed in	
		a) Alkylidene cyclohexane b) 2-Alkyl cyclohexanone	
		c) 2-Halo-cyclohexanone d) Cyclohexene	
	vi)	Polar C-Cl bond in 2-chloro-cyclohexanone	
		a) Causes bathochromic shift to C=O absorption, if equatorial	
		b) Increases stretching frequency $v_{C=0}$, if equatorial	
		c) Increases stretching frequency $v_{C=0}$, if axial	
		d) Causes hypsochromic shift to C=O absorption, if axial	
	vii)	DNAs are polymers, with repeating unit	
	* ***	a) Amino acid b) Nucleotide	
		c) Nucleoside d) 2-Deoxy-D-ribose	
	viii)	Synthetic receptor(s) include(s)	
	VIII)	a) Cyclodextrins b) Kemp's triacid based receptors	
		c) Calixarenes d) Both b) and c)	
Q.2		Attempt any SEVEN	[14]
Ų.4	:1	State the term 'resolution'. Suggest ways of resolving the	
	i)	recemates of amino acids	
	111	State in brief 'MCTC', 'CSP' and 'SMB', emphasizing on their uses	
	ii)	in the resolution	
	1111	Complete the following with correct structures of major products	
	iii)	Complete the lonowing with correct structures of magazine	
		i) DU.	
		i) LiBH ₄ ii) H ⁺	
		i) LiBH ₄ ii) BH ₃ ii) H ⁺ ?	
		GO ₂ EC GO ₂ C	
	iv)	State Sharpless epoxidation and its use in asymmetric synthesis	_
	,	C.P.	(O.T.
			• •/
		(43	•

- v) The cis- and trans-cyclohexane-1, 2-dicarboxylic acids both will undergo forming anhydrides! Explain
- vi) State the 'rabbit-ear effect' in tetrahydro-1,3-oxazin
- vii) List the distinguished features of DNA and RNA
- viii) Illustrate the term "molecular tweezers".
- ix) Ethane is higher in conformational energy then methanol and methylsilanel Explain
- Q.3 a) State Felkin-Anh and Cram's chelated rules. Complete the [06] following with correct major products mentioned, according to these rules.

b) Illustrate 'enantio- and diastereo-selectivities. Complete the [06] following with required conditions, reagents and reactants identified.

s(+) 4-Methyl-3-heptanone

OF

- b) What do you understand by asymmetric synthesis? State the use of (IPC)₂BH, CBS and IPC-BBN in asymmetric synthesis.
- Q.4
 a) List the requirements to promote resolution via formation of [06] diastereomers. Describe resolution of (±)α-methyl-benzylamine
 - b) Describe in brief i) Kinetic method of resolution, ii) Preferential [06] crystallization

OR.

- b) List different forces existing in the conformer. Describe conformational analysis of 2,3-dibromo-butane.
- Q.5 a) Write note on conformational analysis of fused bicyclic systems [06] which contain nitrogen.
 - **b)** State ring- and pyramidal inversions. Discuss conformations of 1, [06] 3, 5-trimethyl-hexahydro-1,3,5-triazine.

OR

- b) Outline
- i) 2-Alkyl and 3-alkyl ketone effects in substituted cyclohexanones.
- ii) Conformational analysis of "1,3- and 1,4-dimethyl cyclohexanes.
- Q.6 a) Describe in brief [06]
 - i) Dehydrogenation of succinic acid by succinate dehydrogenase.
 - ii) Molecular recognition of aromatic amino acids by cyclodextrins.
 - b) Write notes on i) "Structure of DNA", ii) Spherical macrotricyclic [06] polyethers

OR

b) Write note on "Kemp's triacid-based receptors".

