SARDAR PATEL UNIVERSITY

M. Sc. (Semester – IV) CBCS Examination Thursday, 12th April 2018 2:00 p.m. to 5:00 p.m.

PS04CPHC02 Solid State Chemistry (Physical Chemistry)

Jata	Total Marks				
	-		287 cal. K ⁻¹ .mol ⁻¹ , k = 1.38×10^{-23} J. K ⁻¹ , 10^{-5} eV.K ⁻¹ , N _A = 6.023×10^{23} molecule ⁻¹)		
Q.1	Select the correct answer from the alternatives given below to the each question;				
÷	[i]	Which one of the following is not	a strong bond?		
		(a) Covalent bond	(b) Metallic bond		
		(c) Vander Waals Bond	(d) Ionic bond		
	[ii]	Diffraction is a/an			
		(a) Constructive interference	(b) Destructive interference		
		(c) Occurs from the surface	(d) out phase phenomena		
	[iii] The atomic diameter of a FCC crystal (If a is lattice parameter) is,				
		(a) <i>a</i>	(b) a/2		
		(c) $\sqrt{\frac{3}{2}} \ a$	$(d) \frac{1}{\sqrt{2}} a$		
	[iv]	Florescence occurs within			
		(a) $\leq 10^{-5}$ s, (b) $\leq 10^{-5}$ ms,	(c) $\leq 10^{-5} \text{ µs}$, (d) $\leq 10^{-5} \text{ ns}$		
	[v]	Which one of the following is a sto	oichiometric defect?		
		(a) Schottky	(b) Self-interstitial		
		(c) Vacancy	(d) Charge compensation		
	[vi]	In the point group, Im3m, I stance	for crystal system.		
		(a) Body centred	(b) Face centred		
		(c) Simple	(d) Primitive cell		
	[vii]	Zeolite is a composed of	·		
		(a) Al, Na, Si	(b) Al, Li, Si		
		(c) Al, Na, Ge	(d) Mg, Na, Si		
	[viii]	Energy band gap size for semiconductors is in the range of			
		(a) between 1 and 2	(b) between 2 and 3		
		(c) between 3 and 4	(d) > 4		

Q.2	Answer the following in short; (ANY SEVEN)					
	[a]	Why solid state reactions are less popular?	[14]			
	[b]	Calculate "a" for (1 1 1) plane provided that the lattice parameter $a = 813$ pm (picometer).				
	[c]	Explain working principle of fluorescence lamp.				
	[d]	Give brief about color centre.				
	[e]	What are semiconductors? Explain extrinsic semiconductors.				
,	[f]	Discuss advantages of neutron diffraction.				
	[g]	Show that Frenkel defect is combination of vacancy and self-interstitial.				
	[h]	What is Kirkindall effect?				
	[i]	What are Miller indices? How are they determine?				
Q.3	[a]	Define defects and Schottky defects. Derive the equation for number of Schottky defects.	[06]			
		$n = N \exp\left(-\frac{\overline{E}_s}{2 k_B T}\right)$				
	[b]	[i] Write a note on "Covalent solids".	[03]			
		[ii] Discuss Aliovalent impurities as defect in solids.	[03]			
		<u>OR</u>				
	[b]	[i] What is symmetry? Discuss plane of symmetry in cubic crystal system.	[03]			
		[ii] Show that ratio of the number of Schottky defects at 20 °C and 300 °C i.e. n_{293}/n_{573} is 1.33×10^{-6} (Given the average energy required to create defect in ionic crystal is 1.4 eV).	[03]			
Q . 4	[a]	Discuss band structure of silicone (pure) and when it is doped with tri-valent and penta-valent atoms.				
	[b]	Explain "Why only some of energy levels are allowed for occupation of electrons". Draw appropriate figure to explain the same.	[06]			
		<u>OR</u>				
	[b]	 [i] Explain Fermi energy, Fermi level and Work function. [ii] Discuss p - n junction and its applications. 	[03] [03]			
Q.5	[a]	[i] Explain Wagner mechanism for solid state reactions.				
,		[ii] Discuss sol-gel method for preparation of solids.	[03]			
	[b]	Write a note on followings;	[03]			
	[~j	write a note on followings; [06] [i] Nd: YAG laser				
	•	[ii] Polypyrrole as organic metal				
		2				
		••• · · · · · · · · · · · · · · · · · ·				

OR

- [b] [i] Discuss various types of solid state reactions. Also explain variation [03] of degree of decomposition as a function of time.
 - [ii] Explain working principle of LASER. [03]
- Q.6 [a] [i] Discuss factors affecting intensity of X-rays. [03]
 - [ii] Ag crystallizes in a cubic lattice. The density is 10.7×10^3 kg.m⁻³. If [03] the edge length of the unit cell is 405 pm (picometer), determine the type of the lattice (atomic weight of Ag = 107.87 g.mol⁻¹).
 - [b] [i] Derive the relation, $n \lambda = 2 d \sin \theta$ Explain necessary conditions to [03] derive this relation.
 - [ii] A crystal with BCC unit lattice has an edge length of 4.29 Å. [03] Calculate the angle at which a second and third order reflection maxima (n = 2 and n = 3) may be expected for the (1 1 1), (1 0 0) and (0 1 1) lines, when X-rays of 1.5 Å wavelength are used.

OR

- [b] [i] Give difference between neutron and X-ray diffraction. (Any six [03] points).
 - [ii] Calculate the spacing between (1 1 0) planes of KCl viewed as a [03] simple cubic lattice, with the K⁺ and Cl⁻ ions taken as identical and the (1 0 0) plane spacing is 3.125 Å. At what angles must first and second order reflections from (1 0 0) and (1 1 0) planes be observed? (The wavelength of X-ray used is 1.537 Å).

___X___

•