50

SARDAR PATEL UNIVERSITY

M. Sc. (Semester – IV) CBCS Examination Thursday, 7th April 2016 2.30 p.m. to 5.30 p.m.

PS04CPHC02 Solid State Chemistry (Physical Chemistry)

ote :] seful	Figure const	as to the right indicate full marks. Earnts are, $h = 6.63 \times 10^{-34}$ J.s., $R = 1.9$	87 cal. K-1	mol-1 k = 1	Total Marks: 70		
		$k = 0.695 \text{ cm}^{-1}, k = 8.625 \times$	10 ⁻⁵ eV.K ⁻¹ ,	$N_A = 6.02$	3×10^{23} molecule ⁻¹)		
.1	Selec	t the correct answer from the alterna	atives given	below to the	ne each question:		
	[i]	Among the following the molecular solid is;					
		(a) silicon, (b) ice, (c) diamo	ond, (d) brass			
	[ii]	Monoclinic sulphur has the unit cel					
		(a) $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$, (c) $a = b = c$, $\alpha = \beta = \gamma \neq 90^{\circ}$	(d) $a = a$	$b=c, \alpha=$	$\beta = \gamma = 90^{\circ}$		
	[iii]	A certain precious metal crystallize. Its edge length (in metres) is,	s in FCC an	d has a rad	us of 1.44×10^{-10} m.		
		(a) 3.2×10^{-10} , (b) 1.8×10^{-10} ,	(c) 4.1 × 10	-10, (d) 2.1	× 10 ⁻¹⁰		
	[iv] Germanium doped with arsenic gives rise to a;						
		(a) p-type semiconductor,(c) n-type semiconductor,	(b) hole (e) (d) rectified	electron vac er	ancy),		
	[v]	When a Schottky defect occurs in a crystal;					
		(a) an ion from normal site occupies(b) the density of the crystal decreas(c) the density of the crystal does not(d) an electron is trapped in an anion	ses ot change	ial site,	•		
	[vi]	A crystal contains phases which are 3.42×10^{-10} m aparts. When X-ray of certain wavelength gave a first order at an angle of $\theta = 13^{\circ}$ for the (1 0 0) plane. What is the wavelength of X-ray used?					
		(a) 1.54×10^{-10} m, (b) 3.42×10^{-10} m	(c) 1.24	\times 10 ⁻¹⁰ m,	(d) $4.23 \times 10^{-10} \mathrm{m}$		
	[vii]	Solid state reactions are less popular because;					
		(a) large induction period,(c) required high temp.,	,	(b) low % (d) all of a	yield of product,		
	[viii]	In thermistors, semiconductor must s	show				
		(a) temperature, (b) photon, (c) hole, (d) phonon					

Q.2	2 Ans	Answer the following in short; (ANY SEVEN)						
	[a]		tify $\tilde{3} = \overline{6}$.	[14]				
	[b]	Usi	ng appropriate figure, explain point group 4/m 2/m 2/m.					
	[c]	Exp	lain "Density of Crystal remains un alter by introducing Frenkel defects".					
	[d]	Enlist factors affecting magnitude of the electrical conductivity.						
	[e]	Exp	lain Fermi level and Work function.					
к :	[f]	Def	ine induction period in solid state reactions.					
	[g]	Exp	lain, m > m* condition in solid state reactions.					
	[h]	Discuss constructing interference in X-ray diffraction.						
	[i]	Justi solic	ify "Neutron diffraction is used to find position of lighter element in					
Q.3	[a]	[i]	Considering an example of AgCl crystal, derive following relation for Frenkel defects.	[03]				
			$\log {\binom{N_l}{N}} = \log (const.) - \frac{\Delta H}{2 R T}$					
		[ii]] A metal (atomic mass = 40 g.mol ⁻¹) in FCC has an edge length of 5.6×10^{-10} m. If it has 0.5% Schottky defects, Calculate its density (in Kg.m ⁻³).	[03]				
	[b]	[i]	Write a note on "Hexagonal crystal system".	[02]				
		[ii]		[03] [03]				
			OR					
	[b]	[i]	Write a note on "Roto-inversion".	[03]				
		[ii]	Explain color centre and vacancy defects.	[03]				
2.4	[a]	What semic	are semiconductors? Enlist types of semiconductors. Discuss nature of conductor after dopping.	[06]				
	[b]	Draw a graph of energy, E against, K for the different wavelengths. Explain allowed and forbidden energy region. Define Brillouin Zone.						
	<u>OR</u>							
	[b]	[i]	Explain the statement "As bond length increases, Eg decreases". Draw appropriate figure.	[03]				
		[ii]	Write a note on $p-n$ junctions and enlist their applications.	[03]				
. 5	[a]	[i]	For following solid state reaction, write down its mechanism which includes the reactions occurs at different interfaces at solids along with overall reaction.	[03]				
			$MgO(c) + AlpO_{2(c)} \rightarrow MgAlpO_{2(c)}$					

Cont..... 3.......

- Q.5 [a] [ii] Discuss importance of pH and ageing in sol-gel method for preparation [03] of solids.
- Q.5 [b] [i] Write about Synthetic metals with examples. [03]
 - [ii] Explain role of host, activators and sensitizer in photoluminescence [03] phenomena.

<u>OR</u>

- [b] [i] Explain working principle of "LASERS". [03]
 - [ii] For following solid state reactions, explain variation of degree of [03] decomposition as a function of time.
 - (i) $A_{(s)} \rightarrow B_{(s)} + C_{(g)}$
 - (ii) $A_{(s)} \rightarrow B_{(g)} + C_{(g)}$
- Q.6 [a] [i] Enlists advantages of neutron and X-ray diffractions. [03]
 - [ii] First, second, third and fourth order reflections are possible for (1 1 1) plane of NaCl crystal using $Cu.K_{\alpha}$. X-ray radiation. Show that fifth order reflection is not possible.
 - [b] At 20 °C, Fe is body centered cubic, Z = 2, a = 2.866 Å. At 950 °C, Fe is face centered cubic, Z = 4, a = 3.656 Å. At 1425 °C, Fe is again body centered cubic, Z = 2, a = 2.940 Å. At each temperature, calculate (a) the density of iron, (b) the metallic radius of iron atoms. [atomic weight of Fe = 55.93 g.mol⁻¹]

<u>OR</u>

- [b] [i] The (1 1) reflection in the powder pattern of KCl has zero intensity but in the powder pattern of KF it is fairly strong. Explain.
 - [ii] The density of LiF is 2.601 g.cm⁻³. The (1 1 1) first order reflection in the X-ray diffraction from LiF occurs at 8°44' when X-ray of wavelength 70.8 pm (1 pm = 10⁻¹² m) are used. If there are four LiF molecules per unit cell, Calculate Avogadro's number. LiF crystallises in the cubic system. [Li = 6.939 g.mol⁻¹, F = 18.998 g. mol⁻¹].

©©©⊕⊕©©