SC

No. of printed pages : 03

Providence of the second s

[A-27]

M. Sc. (Semester - IV) CBCS Examination Tuesday, 28th April 2015 10.30 a.m. to 1.30 p.m. PS04ECHE03 Selected Topics in Physical Chemistry – II **Total Marks: 70** Note : (i) Figures to the right indicate full marks. (ii) Graph paper will be provided upon request. (Useful constants are, $h = 6.63 \times 10^{-34}$ J.s, R = 1.987 cal. K⁻¹.mol⁻¹, $k = 1.38 \times 10^{-23}$ J. K⁻¹, $k = 0.695 \text{ cm}^{-1}$, $k = 8.625 \times 10^{-5} \text{ eV.K}^{-1}$, $N_A = 6.023 \times 10^{23} \text{ molecule}^{-1}$) **Q.1** Select the correct answer from the alternatives given below to the each question; [08] For athermal polymer solution, [i] (a) $\Delta H^E = 0$, $\Delta S^E = 0$ (b) $\Delta H^E \neq 0$, $\Delta S^E = 0$ (c) $\Delta H^E = 0$, $\Delta S^E \neq 0$ (d) $\Delta H^E \neq 0$, $\Delta S^E \neq 0$ [ii] The interaction parameter, $\chi_{cr} =$ (b) BV₁ m / R $(1 + \sqrt{m})^2$ (a) $1 - \phi_{1c}$ (c) $(\sqrt{m} + 1)^2 / 2 m$ (d) $1/(1 + \sqrt{m})$ According to Flory's original theory, $\alpha^5 - \alpha^3 =$ _____. [iii] (c) 1.35, (d) 3.6 (a) 2.6, (b) 1.4, For ideal polymer solution, the value of second virial coefficient, $A_2 =$ ____. [iv] (b) 2 (d) 0 (a) 3 (c) 1 [v] For perturbed state, the solubility parameter, δ have values _____ (a) between 0 and 1 (b) between 1 and 1.33(d) between 0.75 and 1.25 (c) between 0 and 0.33 According to geometric mean, $E_{AB} =$ [vi] (b) $\frac{1}{2}(E_{AA} + E_{BB})^2$ (a) $\sqrt{E_{AA}}$. E_{BB} (c) $(E_{AA} + E_{BB})^2$ (d) 2 $(E_{AA} + E_{BB})$ In Zimm treatment, the excluded volume, u = ____ [vii] (b) $4/3 \pi (r)^3$ (a) $4/3 \pi (2 r)^3$ (d) $\pi (2 r)^3$ (c) $\pi (r)^{3}$ [viii] For a linear array of two dimensional polymer molecule, if the minimum value of coordination number (Z = 2) than, q =____ (b) 2 (c) 1 (d) 0 (a) 3

SARDAR PATEL UNIVERSITY

Cont..... 2......

- [a] What is mean by an unperturbed state?
- [b] Define : Regular solution, Ideal solution
- [c] Show that, $< r^2 > = n l^2$.
- [d] Enlist limitations of Guggenheim equation.

新闻》:「《李 李奕》,李 建筑

- [e] According to Zimm approach, show a graph of variation in π/C as a function of concentration for an ideal and non-ideal solution.
- [f] Give schematic representation of instantaneous chain configuration.
- [g] Providing, $\alpha^2 1 = 4/3$ Z, show that $\delta = 1.5$ for perturbed state.
- [h] Justify "Change in potential of solvent and solute are same".
- [i] Give expression $\Delta \mu_1^*/RT$.
- Q.3 [a] What do you mean by an ideal solution ? Formulate the free energy of [06] mixing for an ideal solution considering a quasi crystalline model.
 - **[b]** $\Delta G^* / RT = n_1 \ln \phi_1 + n_2 \ln \phi_2$, due to Flory theory for athermal polymer [06] solution. Deduce the expression for $\Delta \mu_1^*$ and $\Delta \mu_2^*$.

<u>OR</u>

- [b] [i] Give a brief discussion on the Guggenheim's treatment given to an [03] athermal solution.
 - [ii] Describe Zimm's approach to athermal solution.
- Q.4 [a] What is solubility parameter? Discuss Hildebrand's theory of a regular [06] solution to derive, $\Delta H = V \phi_A \phi_B (\delta_A \delta_B)^2$.
 - [b] Using free energy diagram, explain critical point, Binodal curve and [06] spinodal curve. Also explain stable, meta stable and unstable regions of the solution.

OR

[b] For general polymer solution, $\Delta \mu_1^* / RT = \ln \phi_1 + (1 - 1/m) \phi_1 + \chi \phi_2^2$ Obtained χ_{cr} , ϕ_{cr} and T_{cr} .

Q.5	[a]	[i]	Prove that $\int_{a}^{\infty} \rho(\vec{s} / s) d\vec{s} = n$.	[03]
-				

[ii] For general polymer solution, $\Delta G^* = RT \left[n_1 \ln \phi_1 + n_2 \ln \phi_2 + \chi \phi_1 \phi_2 (n_1 + mn_2) \right]$ Prove that the potential of mean force with fixed radius of gyration is, $V(s) = \left(\frac{3^{3/2}}{16\pi^{3/2}}\right) \frac{kT}{V_1} \left(\frac{1}{2} - \chi\right) \frac{M^2 V^2}{N A^2} S^{-3}$ [03]

[14]

[03]

[06]

and press

[b] [i] As per Harmans and Overback, [03] 1/x - x = 1/3 KT dV(x)/dxShow that $\alpha^5 - \alpha^3 = C_1 Z$. (where $C_1 = \text{constant}$) [ii] According to Fox-Flory theory of viscosity, Show that, [03] $\upsilon = (3\varepsilon + 1)/2$.

<u>OR</u>

[b] For following values of M and η , Calculate the value of (0.44 Φ B K^{-1/3}) [06] and K^{2/3}, using appropriate graph,

$M \times 10^{-4}$ (g.mol ⁻¹)	6	8	12	16	18
η (dl/gm)	4.782	6.378	9.564	12.75	14.32

- **Q.6** [a] Using following equation, $1/x - x = 1/3 \ k \ T \ dV(x)/dx$ Derive (i) Kurata-Stockmayer-ring equation, (ii) Kurata equation.
 - [b] Using B-J equation, $\alpha^2 1 = 4/3 \alpha Z$, Derive values of δ , ε , υ for perturbed [06] and unperturbed state. Also deduced relation between $\varepsilon \& Z$, and $\eta \& M$.

OR

[b] Using Fixman theory, $\alpha^3 - 1 = 2$ Z, Derive values of δ , ε , υ for perturbed [06] and unperturbed state. Also deduced relation between $\varepsilon \& Z$, and $\eta \& M$.

 $\odot \odot \odot \odot \odot \odot \odot \odot \odot \odot \odot$

[06]