$[A-27]$
No. of printed pages: $\underline{03}$

SARDAR PATEL UNIVERSITY

M. Sc. (Semester - IV) CBCS Examination Tuesday, $28^{\text {th }}$ April 2015
 $10.30 \mathrm{a} . \mathrm{m}$. to $1.30 \mathrm{p} . \mathrm{m}$.

PS04ECHE03 Selected Topics in Physical Chemistry - II

Total Marks: 70
Note : (i) Figures to the right indicate full marks.
(ii) Graph paper will be provided upon request.
(Useful constants are, $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{R}=1.987 \mathrm{cal} . \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}, \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} . \mathrm{K}^{-1}$,
$\mathrm{k}=0.695 \mathrm{~cm}^{-1}, \mathrm{k}=8.625 \times 10^{-5} \mathrm{eV} \cdot \mathrm{K}^{-1}, \mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23}$ molecule ${ }^{-1}$)
Q. 1 Select the correct answer from the alternatives given below to the each question;
[08]
[i] For athermal polymer solution,
(a) $\Delta \mathrm{H}^{\mathrm{E}}=0, \Delta \mathrm{~S}^{\mathrm{E}}=0$
(b) $\Delta \mathrm{H}^{\mathrm{E}} \neq 0, \Delta \mathrm{~S}^{\mathrm{E}}=0$
(c) $\Delta \mathrm{H}^{\mathrm{E}}=0, \Delta \mathrm{~S}^{\mathrm{E}} \neq 0$
(d) $\Delta \mathrm{H}^{\mathrm{E}} \neq 0, \Delta \mathrm{~S}^{\mathrm{E}} \neq 0$
[ii] The interaction parameter, $\chi_{\mathrm{cr}}=$ \qquad .
(a) $1-\phi_{1 c}$
(b) $B V_{1} \mathrm{~m} / \mathrm{R}(1+\sqrt{ } \mathrm{m})^{2}$
(c) $(\sqrt{ } \mathrm{m}+1)^{2} / 2 \mathrm{~m}$
(d) $1 /(1+\sqrt{ } \mathrm{m})$
[iii] According to Flory's original theory, $\alpha^{5}-\alpha^{3}=$ \qquad .
(a) 2.6 ,
(b) 1.4 ,
(c) 1.35 ,
(d) 3.6
[iv] For ideal polymer solution, the value of second virial coefficient, $\mathrm{A}_{2}=$ \qquad .
(a) 3
(b) 2
(c) 1
(d) 0
[v] For perturbed state, the solubility parameter, δ have values \qquad .
(a) between 0 and 1
(b) between 1 and 1.33
(c) between 0 and 0.33
(d) between 0.75 and 1.25
[vi] According to geometric mean, $\mathrm{E}_{\mathrm{AB}}=$ \qquad .
(a) $\sqrt{ } E_{A A} \cdot E_{B B}$
(b) $1 / 2\left(E_{A A}+E_{B B}\right)^{2}$
(c) $\left(\mathrm{E}_{\mathrm{AA}}+\mathrm{E}_{\mathrm{BB}}\right)^{2}$
(d) $2\left(\mathrm{E}_{\mathrm{AA}}+\mathrm{E}_{\mathrm{BB}}\right)$
[vii] In Zimm treatment, the excluded volume, $\mathbf{u}=$ \qquad -
(a) $4 / 3 \pi(2 \mathbf{r})^{3}$
(b) $4 / 3 \pi(\mathbf{r})^{3}$
(c) $\pi(\mathbf{r})^{3}$
(d) $\pi(2 r)^{3}$
[viii] For a linear array of two dimensional polymer molecule, if the minimum value of coordination number $(\mathrm{Z}=2)$ than, $q=$ \qquad -
(a) 3
(b) 2
(c) 1
(d) 0

Cont..... 2........

Q. 2 Answer the following in short; (ANY SEVEN)

[a] What is mean by an unperturbed state?
[b] Define : Regular solution, Ideal solution
[c] Show that, $\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{n} \mathrm{l}^{2}$.
[d] Enlist limitations of Guggenheim equation.
[e] According to Zimm approach, show a graph of variation in π / C as a function of concentration for an ideal and non-ideal solution.
[f] Give schematic representation of instantaneous chain configuration.
[g] Providing, $\alpha^{2}-1=4 / 3 \mathrm{Z}$, show that $\delta=1.5$ for perturbed state.
[h] Justify "Change in potential of solvent and solute are same".
[i] Give expression $\Delta \mu_{1}{ }^{*} / \mathrm{RT}$.
Q. 3 [a] What do you mean by an ideal solution? Formulate the free energy of mixing for an ideal solution considering a quasi crystalline model.
[b] $\Delta \mathrm{G}^{*} / \mathrm{RT}=\mathrm{n}_{1} \ln \phi_{1}+\mathrm{n}_{2} \ln \phi_{2}$, due to Flory theory for athermal polymer solution. Deduce the expression for $\Delta \mu_{1}{ }^{*}$ and $\Delta \mu_{2}{ }^{*}$.

OR

[b] [i] Give a brief discussion on the Guggenheim's treatment given to an athermal solution.
[ii] Describe Zimm's approach to athermal solution.
Q. 4 [a] What is solubility parameter? Discuss Hildebrand's theory of a regular solution to derive, $\Delta \mathrm{H}=\mathrm{V} \phi_{\mathrm{A}} \phi_{\mathrm{B}}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{B}}\right)^{2}$.
[b] Using free energy diagram, explain critical point, Binodal curve and spinodal curve. Also explain stable, meta stable and unstable regions of the solution.

0 OR

[b] For general polymer solution,
$\Delta \mu_{1}{ }^{*} / \mathrm{RT}=\ln \phi_{1}+(1-1 / \mathrm{m}) \phi_{1}+\chi \phi_{2}{ }^{2}$
Obtained $\chi_{\mathrm{cr}}, \phi_{\mathrm{cr}}$ and T_{cr}.
Q. 5 [a] [i] Prove that $\int_{0}^{\infty} \rho(\vec{s} / s) d \vec{s}=n$.
[ii] For general polymer solution,

$$
\Delta \mathrm{G}^{*}=\mathrm{RT}\left[\mathrm{n}_{1} \ln \phi_{1}+\mathrm{n}_{2} \ln \phi_{2}+\chi \phi_{1} \phi_{2}\left(\mathrm{n}_{1}+\mathrm{mn}_{2}\right)\right]
$$

Prove that the potential of mean force with fixed radius of gyration is,

$$
\mathrm{V}(\mathrm{~s})=\left(\frac{3^{3 / 2}}{16 \pi^{3 / 2}}\right) \frac{k T}{V_{1}}(1 / 2-\chi) \frac{M^{2} V^{2}}{N_{A}{ }^{2}} S^{-3}
$$

[b] [i] As per Harmans and Overback,
$1 / x-x=1 / 3 \mathrm{KT} \mathrm{dV}(x) / \mathrm{d} x$
Show that $\alpha^{5}-\alpha^{3}=C_{1} Z$. (where $C_{1}=$ constant)
[ii] According to Fox-Flory theory of viscosity, Show that,
$v=(3 \varepsilon+1) / 2$.

OR

[b] For following values of \mathbf{M} and η, Calculate the value of ($0.44 \Phi \mathbf{B ~ K}^{-1 / 3}$) and $\mathbf{K}^{2 / 3}$, using appropriate graph,

$\mathbf{M} \times \mathbf{1 0}^{-4}$ $\left(\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$	6	8	12	16	18
η $(\mathrm{d} / \mathrm{gm})$	4.782	6.378	9.564	12.75	14.32

Q. 6 [a] Using following equation, $1 / x-x=1 / 3 k T d V(x) / d x$
Derive (i) Kurata-Stockmayer-ring equation,
(ii) Kurata equation.
[b] Using B-J equation, $\alpha^{2}-1=4 / 3 \alpha Z$, Derive values of δ, ε, v for perturbed and unperturbed state. Also deduced relation between $\varepsilon \& Z$, and $\eta \& M$.

OR

[b] Using Fixman theory, $\alpha^{3}-1=2 \mathrm{Z}$, Derive values of δ, ε, v for perturbed and unperturbed state. Also deduced relation between $\varepsilon \& Z$, and $\eta \& M$.

