

### No. of printed pages: 3

## SARDAR PATEL UNIVERSITY

# M. Sc. (Semester –IV) Examination Saturday 25th APRIL 2015

## Saturday, 25<sup>th</sup> APRIL 2015 10.30 a.m. to 01.30 p.m.

#### PS04CPHC03: ELECTRO ANALYTICAL METHODS

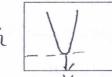
Note: Figures to the right indicate full marks.

**Total Marks: 70** 

(08)

| [1] | The emf of the cell T1 / T1 <sup>+</sup> (0.001) be increased by                              | M) // $Cu^{+2}$ (0.01M) /Cu is 0.83 V.The cell emf                            |  |
|-----|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
|     | <ul><li>(a) Increasing concentration of T</li><li>(c) Increasing concentration of T</li></ul> | (b) Increasing concentration of Cl <sup>+</sup> and Cu <sup>+2</sup> (d) None |  |
| [2] | If a salt bridge is removed from the two half cells, the voltage                              |                                                                               |  |
|     | (a) Drops to zero                                                                             | (b)Does not change                                                            |  |
|     | (c) Increases slowly                                                                          | ( d) Increases Rapidl                                                         |  |
| [3] | The number of coulombs required for the deposition of 107.80 gms of silver is                 |                                                                               |  |
|     | (a) 96500                                                                                     | (b) 10,000                                                                    |  |
|     | (c) 48250                                                                                     | (d) 93000                                                                     |  |
| [4] | A current of 2.6 ampere was passed through CuSO <sub>4</sub> solution for 380 seco            |                                                                               |  |
|     | copper deposited is $(Cu = 63.5)$                                                             | (1) 0 (25                                                                     |  |
|     | (a) 0.3250                                                                                    | (b) 0.635                                                                     |  |
|     | (c) 6.35                                                                                      | (d) 3.175                                                                     |  |
| [5] | What is the P <sup>H</sup> of a solution having                                               | H+ ion concentration of $3.3 \times 10^{-11}$                                 |  |
|     | (a) 10.48                                                                                     | (b) 8.5                                                                       |  |
|     | (c) 8.4815                                                                                    | (d) 6.4                                                                       |  |
| [6] | When PH of a solution decreases, its H ion concentration                                      |                                                                               |  |
|     | (a) Decreases                                                                                 | (b) Increases                                                                 |  |
|     | (c) Remains constant                                                                          | (d) Increases rapidly                                                         |  |

sectional area of each electrode is 0.75cm<sup>2</sup>. The cell constant value is


(b)  $0.5 \text{ cm}^{-1}$ 

(d) 0.2 cm<sup>-1</sup>

[8] For the following amperometric curve

(a)  $1.25 \text{ cm}^{-1}$ 

(c)  $2.0 \text{ cm}^{-1}$ 



- (a) sample is active and reagent is inactive
- (b) sample and reagent is both
- (c) sample and reagent both inactive
- (d) sample is inactive and reagent is active

| Q.2  | Answe (a)  | rany seven of the following:<br>For the cell, $Mg_{(s)} + 2Ag^+ (0.0001M) \rightarrow Mg^{2+}(0.13M) + 2Ag_{(s)}$ .                 | (14) |
|------|------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
|      |            | Calculate $E_{cell}$ if $E_{cell}^0 = 3.17 \text{ v.}$                                                                              |      |
|      | (b)        | State Faraday's laws of electrolysis.                                                                                               |      |
|      | (c)        | Differentiate between Galvanic and electrolytic cell.                                                                               |      |
|      | (d)        | State forces apply on electrode surface during electrolysis in polarography. How these                                              |      |
|      |            | forces can be minimize?                                                                                                             |      |
|      | (e)        | Using $\Delta E = q + w$ , Obtain $\Delta G = W_{electrical}$                                                                       |      |
|      | <b>(f)</b> | A solution of $P^H = 9$ is one thousand times as basic as solution. Calculate the $P^H$ of                                          |      |
|      |            | the solution.                                                                                                                       |      |
|      | (g)        | Obtain P <sup>H</sup> = — log Ka for monobasic weak acid.                                                                           |      |
|      | (h)        | A solution containing 0.25 gms of Cu <sup>+2</sup> requires 20 minutes for complete deposition                                      |      |
|      |            | Of Copper at 1.25 A. Calculate coulomb requires for the deposition. ( $Cu = 63.54.F = 96500$ )                                      |      |
|      | (i)        | Calculate equilibrium constant for the reaction : $Cu_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Cu^{2+} + 2Ag_{(s)}$                       |      |
| 0.2  |            | (Given: $E_{cell}^0 = 0.46 \text{ v}$ , where $E_{cell} = 0$ )                                                                      |      |
| Q. 3 | (a)        | Discuss factors affecting P <sup>H</sup> measurement with glass electrode.                                                          | (06) |
|      |            | Why calibration of glass electrode is required?                                                                                     |      |
|      | (b)        | Calculate PH during the titration of 50 ml of 0.05 M HCl with 0.1 M NaOH at                                                         | (06) |
|      |            | different addition of NaOH solution. i.e. 0.0 ml, 10 ml, 25 ml, and 25.5 ml.                                                        |      |
|      | (b)        | OR Discuss hydrogen electrode and antimony electrode.                                                                               | (06) |
| Q.4  | (a)        | Outline electrochemical cell. Discuss electrolytic concentration cell without and with                                              | (06) |
|      |            | liquid junction potential.(Reversible to Cation and Reversible to anion)                                                            |      |
|      | (b)        | Obtain the relations: (i) $\Delta H = nF [T(\partial E/\partial T)_P - E]$ (ii) $E^0 = RT/nF \ln K$ and                             | (06) |
|      |            | (iii) $\log K_{sp} = E_{cell}^0 / 0.0591$                                                                                           |      |
|      | (b)        | For a cell Zn / ZnCl <sub>2 (aq)</sub> / AgCl <sub>(s)</sub> / Ag, the emf is 1.02V at $0^{\circ}$ C and 1.0196 V at $1^{\circ}$ C. | (06) |

Write down cell reaction and calculate  $\Delta G$ ,  $\Delta S$  and  $\Delta H$  for the reaction.( F = 98485)

Write down mathematical form of Kohlarausch's law of independent migration of Q.5 (06)(a) Ions. Discuss its applications. State advantages and disadvantages of high frequency conductance method. (b) (06)(i) A 0.180 grams of organic acid was titrated coulometrically with OH ions (b) (06)Produced in 5 minutes by constant current of 0.514 ampere. Calculate the mass of the acid (n = 1, and F = 96500) (ii) Calculate equivalent conductance of acetic acid at infinite dilution if ionic conductance's at 25°C for HCl =349.8, NaCl =126.4, and NaAc= 91.00 The diffusion current of Pb<sup>+2</sup> in an unknown solution is 5.6  $\mu$ A. 1 ml of 1.0 × 10<sup>-3</sup> M Q.6 (06)(a) Pb<sup>+2</sup> solution is added to 10 ml of unknown solution and the diffusion current of the  $Pb^{+2}$  is increased to 12.0  $\mu$ A... What is the concentration of Pb<sup>+2</sup> in the unknown solution. P- Phylene diamine, present in 0.488 mM concentration and having an applied (06)(b) current of 29.0  $\mu$ A,had transition time of 76.8 second. What is the electron change Involved if the electrode had surface area of 1.72 cm<sup>2</sup> and D =  $0.92 \times 10^{-5}$  $(F = 96500 \text{ and } \pi = 3.14)$ OR

(03)

(03)

◎ ● ☆ ● ◎

(i)Discuss current sample and cyclic voltametry.

(ii) State applications of amperometry.

(b)