No. of printed pages : 03

[A-35]

SARDAR PATEL UNIVERSITY M. Sc. (Semester - IV) CBCS Examination Thursday, 23rd April 2015 10.30 a.m. to 1.30 p.m. PS04CPHC02 Solid State Chemistry (Physical Chemistry)

Total Marks : 70

Note : Figures to the right indicate full marks. (Useful constants are, $h = 6.63 \times 10^{-34}$ J.s , R = 1.987 cal. K⁻¹.mol⁻¹, $k = 1.38 \times 10^{-23}$ J. K⁻¹, $k = 0.695 \text{ cm}^{-1}, k = 8.625 \times 10^{-5} \text{ eV.K}^{-1}, N_A = 6.023 \times 10^{23} \text{ molecule}^{-1})$

Q.1 Select the correct answer from the alternatives given below to the each question; [08]

Which solid will have the weakest intermolecular forces; [i]

(a) Ice, (b) phosphorus, (c) naphthalene, (d) sodium fluoride [ii]

Graphite exists in hexagonal lattice form, its lattice parameters are;

(a)
$$a = b = c$$
, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ (b) $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$
(c) $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$ (d) $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$

- [iii] The bond length and bond angles in molecules in solid state are calculated by X-ray diffraction technique because, X-rays are scattered by,
 - (b) protons only, (c) neutrons only, (a) nucleus, (d) electrons only
- [iv] For a crystal, the angle of diffraction (2θ) is 90° and the second order line has a value of 2.28 Å. The wavelength (in Å) of X-rays used for Bragg's diffraction is:

(a) 2.28, (b) 2.00, (c) 1.613, (d) 4.00

- [v] For silicone to behave like a p-type semiconductor, the impurity to be added must have valence electrons equal to ;
 - (a) 4, (b) 3, (c) 2. (d) 6
- [vi] In n-type semiconductor, Fermi level is located;
 - (a) between conduction band and (b) near to valence band valence band (c) near to conductance band (d) difficult to measure accurately
- [vii] When $m > m^*$, $\partial \Delta G / \Delta m =$
 - (a) positive, (b) negative, (c) zero, (d) half integer
- [viii] The time lapse between excitation and emission is $\leq 10^{-8}$ sec, the process is known as

(a) fluorescence,

(c) thermal quenching,

(b) phosphorescence,

(d) scattering

Cont..... 2......

- Q.2 Answer the following in short : (ANY SEVEN)
 - [a] Explain "X-rays are energetic".
 - [b] Define : rotoinversion, superconductivity
 - [c] What are color centres ? How they appear?
 - [d] Give limitations of co-precipitation methods for solid preparation.
 - [e] What are miller indices ? How are they determine?
 - [f] Calculate the angles at which first, second and third order reflections are obtained from inter planner distance 500 pm, using X-rays of wavelength 100 pm.
 - [g] What are extrinsic semiconductors? Discuss briefly with appropriate diagram.
 - [h] Explain working principle of fluorescence lamp?
 - [i] Give brief about organic charge transfer complexes.
- Q.3 [a] What are defects? What is the cause of Schottky defects? Derive an [06] expression for the number of Schottky defects.
 - [b] [i] Write a note on "Tetragonal crystal system". [03]
 - [ii] Define symmetry. With the help of cubic crystal, explain line of [03] symmetry, point of symmetry and plane of symmetry.

<u>OR</u>

- [b] [i] Write a note on "Covalent solid".
 - [ii] The average energy required to create a Frenkel defect in an ionic [03] crystal, A²⁺B²⁻ is 1.4 eV. Calculate the ratio of the number of Frenkel defects at 20 °C and 300 °C in 1 g of the crystal.
- Q.4 [a] With the help of appropriate diagram, explain effect of temperature on [06] extrinsic and intrinsic semiconductors.
 - [b] [i] Explain band structure of metal, insulator and semiconductor. [03]
 - [ii] Enlists limitations of free electron theory. [03]

<u>OR</u>

- [b] [i] Explain band structure of silicone on the basis of quantum [03] mechanics approach.
 - [ii] Draw and explain dispersion curves. Explain Fermi energy and [03] Fermi level.
- Q.5 [a] Explain Wagner mechanism for solid state reaction. Also discuss [06] Kirkindall Effect.

Cont..... 3......

14.

[03]

Q	. 5	[b]	[i]	Write a note on "Zeolites".
---	-----	-----	-----	-----------------------------

[b]

[ii] Discuss working principle of optical fibre.

[03] [03]

<u>OR</u>

- [b] Using potential energy diagram, explain mechanism of luminescence. [06]
- Q.6 [a] Metallic iron (Fe) at 20 °C is studied by the Bragg method reflections are [06] first obtained at $\theta = 11.11^{\circ}$, 8.00°, 21.0°. What type of cubic lattice does iron have ? The density of iron at 20 °C is 7.86 g.cm⁻³. What is the side length of the unit cell at 20 °C. What is the wavelength of X-rays used? (Atomic weight of iron = 55.85 g.mol⁻¹)
 - [b] [i] Discuss factors which affect intensity of X-rays. [03]
 - [ii] Give differences between electron and neutron diffraction. [03]

<u>OR</u>

[i] Derive Bragg equation.
[03]
[ii] Ag crystallizes in a cubic lattice. The density is 10.7 × 10³ kg.m⁻³.
[03] If the edge length of the unit cell is 406 pm, determine the type of the lattice. (Atomic weight of Ag = 107.87 g.mol⁻¹)