No. of printed pages : 03

SARDAR PATEL UNIVERSITY M. Sc. (Semester – IV) CBCS Examination Thursday, 23rd April 2015 10.30 a.m. to 1.30 p.m. PS04CINC02 Solid State Chemistry (Inorganic Chemistry)

Total Marks : 70

Sc

Note : (Usefi	Figure 1 const	tes to the right indicate full marks. tants are, $h = 6.63 \times 10^{-34}$ J.s, $R = 1.93$ $k = 0.695$ cm ⁻¹ , $k = 8.625 \times 10^{-10}$	87 cal. K^{-1} .mol ⁻¹ , $k = 1.38 \times 10^{-23}$ J. K^{-1} , 10^{-5} eV. K^{-1} , $N_A = 6.023 \times 10^{23}$ molecule ⁻¹)	
Q.1	Select the correct answer from the alternatives given below to the each question; [08]			
	[i]	Diamond is an example of,		
		(a) solid with hydrogen bonding,(c) electrovalent solid	(b) covalent solid, (d) amorphous solid	
	[ii]	The crystal system of a compound with unit cell dimensions $a = 0.387$, $b = 0.387$ and $c = 0.504$ and $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$;		
		(a) Triclinic (c) Hexagonal	(b) Rhombohedra (d) Orthorhombic	
	[iii]	The positions of lighter elements like H or D in solids can be obtained by'		
		(a) neutron diffraction, (c) X-ray diffraction,	(b) electron diffraction (d) γ - rays	
	[iv]	Na atom crystallise in BCC lattice w Na atom is;	ith cell edge, $a = 4.29$ Å. The radius of	
		(a) 18.6 Å, (b) 1.86 Å,	(c) 1.86 pm , (d) 1.860 pm	
	[v]	For silicone to behave like a <i>n</i> -ty added must have valence electrons e	pe semiconductor, the impurity to be qual to;	
		(a) 4, (b) 3, (c)) 5, (d) 6	
	[vi]	In p-type semiconductor, Fermi leve	l is located;	
		 (a) between conduction band and valence band (c) near to conductance band 	(b) near to valence band(d) difficult to measure accurately	
	[vii]	When $m < m^*$, $\partial \Delta G / \Delta m =$		
		(a) positive, (b) negative, (c) z	ero, (d) half integer	
	[viii]	The time lapse between excitation as known as	nd emission is $\geq 10^{-8}$ sec, the process is	
		(a) fluorescence, (c) thermal quenching,	(b) phosphorescence, (d) scattering	

- Q.2 Answer the following in short ; (ANY SEVEN)
 - [a] Explain "X-rays have better penetration power".
 - [b] Define : rotoreflection, organic metals
 - [c] What is superconductivity ? How would you explain superconductivity in metals?
 - [d] Give limitations of solid state reactions.
 - [e] What is law of rational indices ? How are they determine?
 - [f] X-rays of wavelength 154 pm are diffracted by the (2 0 0) plane of AgCl crystal. At what angle would the maximum reflection occurs?
 (Given a = 555 pm)
 - [g] What are intrinsic semiconductors ? Discuss briefly with appropriate diagram.
 - [h] Explain working principle of thermister ?
 - [i] Give brief about fullerenes.

[b]

- Q.3 [a] Define defects in crystal. What is the cause of Frenkel defects ? Derive an [06] expression for the number of Frenkel defects.
 - [b] [i] Write a note on "Triclinic crystal system". [03]
 - [ii] What are improper rotations? With the help of appropriate diagrams [03] correlate roto-inversion and roto-reflection.

<u>OR</u>

- [i] Write a note on "Molecular solid".
 [03]
 [ii] The average energy required to create a Schottky defect in an ionic crystal, A²⁺B²⁻ is 1.6 eV. Calculate the ratio of the number of Schottky defects at 25 °C and 200 °C in 1 g of the crystal.
- Q.4 [a] Explain variation in carrier concentration and conductivity as a function of [06] temperature for semiconducting materials.
 - [b] [i] Justify "Na is metallic in nature". [03]
 - [ii] Write a note on "*p-n junctions*". [03]

<u>OR</u>

- [b] [i] Explain band structure of silicone on the basis of molecular orbital [03] theory approach.
 [ii] Write a note on "Hoping Conductance". [03]
- Q.5 [a] Discuss the mechanism of the following reaction occurs at the interface of [06] Al_2O_3 and MgO. 4 MgO + 4 $Al_2O_3 \rightarrow 4 MgAl_2O_4$

Also explain Kirkindall effect.

Cont..... 3......

[14]

[b]	[i]	Write a note on "Sol-gel method".	[03]
	[ii]	Discuss working principle of lasers.	[03]

<u>OR</u>

- [b] Using potential energy diagram, explain spill over point and thermal [06] quenching which are responsible for decrease in luminescence efficiency.
- Q.6 [a] Metallic iron (Fe) at 1100 °C is studied by the Bragg method reflections are [06] first obtained at $\theta = 9.8^{\circ}$, 12.57°, 7.55°. What type of cubic lattice does iron have at 1100 °C? The density of iron at 1100 °C is 5.86 g.cm⁻³. What is the side length of the unit cell at 1100 °C. What is the wavelength of X-rays used? (Atomic weight of iron = 55.85 g.mol⁻¹)
 - [b] [i] What are the factors which affect intensity of X-rays? [03]
 - [ii] Give differences between electron and neutron diffraction. [03]

OR

- [b] [i] Derive Bragg equation.
 - [ii] Density of NaCl at 25 °C is 2.163 × 10³ kg.m⁻³. When X-rays from a [03] palladium target having a wavelength of 58.1 pm are used, the (2 0 0) reflection of NaCl occurs at an angle of 5.91°. Calculate the number of Na⁺ and Cl⁻ ions in the unit cell. (Molecular weight of NaCl = 58.45 g.mol⁻¹)

[03]