SARDAR PATEL UNIVERSITY

M. Sc. FOURTH SEMESTER Examination 2017

Saturday, 15th April 2017,

Time: 2.00 p.m. to 5.00 p.m.

PS04CANC02,

ELECTRO ANALYTICAL METHODS

N.B.	Figures	to	the	right	indicate	marks.

Total Marks: 70

Q-1 Choose appropriate answers. (only code)

[08]

- To minimize the electro stating force one of the following is added into 1. the solution
 - (a) Carpenter Glue
- (b) Fevicole

(c) salt

- (d) Inactive electrolyte
- Which one of the following is a weak acid, 2.
 - (a) HNO₃
- (b)HI

(c) HBr

- (d) HF
- 3. The half reaction that occurs at the anode during electrolysis of molten NaBr is
 - (a) $2Br \longrightarrow Br_2 + 2e$
- (b) $Br_2 + 2e \rightarrow 2Br$

(c) $Na^+ + e \rightarrow Na$

- (d) $2H_2O + 2e \rightarrow 2OH^- + H_2$
- 4. Unit of electrical conductance is
 - (a) Volt (b) Ampere (c) Coulomb (d) Siemens
- If K_w is 2.9×10^{-15} at 10° C. What is the P^H of pure water at 10° C 5.
 - (a) 6.72
- (b)7.00
- (c) 7.27
- (d) 7.53
- The POH of a solution of NaOH is 11.30. What is the [H⁺] for this 6. solution
 - (a) 2.0×10^{-3}
- (b) 2.5×10^{-3}
- (c) 5.9×10^{-3}
- (d) 2.9×10^{-3}
- In a sample of pure water which one is always true at all temperature and 7. pressure?

(a)
$$P^{H} = 7$$
 (b) $P^{OH} = 7$ (c) $[H3O^{+}] = 1 \times 10^{-7}$ (d) $[H3O^{+}] = [OH^{-}]$

- For monobasic weak acids PH equals to 8.
 - (a) log Ka

- (b) $< \log Ka$ (c) $> \log Ka$ (4) $\log Ka$

[14] 1. Calculate equilibrium constant for the reaction: $Cu_{(s)}+2Ag^{+}_{(aq)} \rightarrow Cu^{+2}+2Ag_{(s)}$ (Given: $(E^{0}_{cell} = 0.46 \text{ v and } E_{cell} = 0.0 \text{ v})$ Calculate the P^{H} of N/100 H₂SO₄ solution and N/10 NaOH solution. 2. 3. State relationships of electro analytical methods. State sources of emf observed in glass electrode. 4. Why aqueous solutions are generally used in electro analytical methods. 5. State applications of PH measurements. 6. Derive $E^0 = RT / nF \ln K$. 7. How basicity of an acid is determined by conductometry measurement. 8. 9. Write down Ilkovic equation. Explain terms involved in it. Q-3Differentiate between working and reference electrodes. (a) Discuss [06] Quinhydrone electrodes. (b) (i) State advantages and disadvantages of antimony electrode. [03] (ii)write a note on solid state sensors and precipitate electrodes. [03] (i) Calculate PH of a solution after mixing 0.1M acetic acid with 200 ml (b) [03] 0.1M NaOH. ($K_a = 1.8 \times 10^{-5}$) (ii) Write down errors with glass electrodes in PH measurement. [03]Q-4 Discuss First kind, second kind and third kind of electrodes in [06] (a) potentiometry. (b) (i)Explain chemical cell without transference. [03](ii) Write a note on amalgam electrodes. [03]OR For the cell, (b) Pt / $Cl_{2(g)}$ (1bar) /HCl (a=1) /Ag $Cl_{(s)}$ /Ag Calculate E^0 for Ag/AgCl /Cl electrode.(E_{cell} = - 1.1369V, $E^0_{Cl/Cl}$ =1.35V [06](2)

Q-2

Answer any seven of the following

O	-5
\mathbf{v}	_

- (a) Calculate the equivalent conductance of acetic acid at infinite dilution at [06] $25 \, ^{\circ}\text{C}$. (H⁺ = 349.8, Na⁺ = 50.11, Cl⁻ = 26.34 and CH3COO⁻ = 40.9)
- (b) Compare between low frequency and high frequency conductance [06] techniques.

OR

(b) The equivalent conductance of 0.1 N solution of MgCl₂ is 97.1 ohm⁻¹ [06] cm²/eq. at 25 °C. A cell with electrodes that are 150 cm² in area and 0.5 cm apart filled with 010N MgCl₂. How much current will flow when the potential difference between electrodes is 5 Volt?

Q-6

- (a) (i) Write down the advantages and disadvantages of dropping mercury [03] electrode.
 - (ii) What do you mean by Polarographic hump? How this hump can be [03] removed?
- (b) Discuss current sampled and pulse polarography.

[06]

OR

(b) How much is the transition time of Cd^{+2} increases if solution of 1 x 10⁻⁴ M [06] Cd^{+2} is added to 1.00 x 10⁻⁴ M Pb⁺² solution?

•

No. of Printed pages = 2

[114]

SARDAR PATEL UNIVERSITY

(CBCS) M. Sc. Examination, Semester - IV PS04CINC01: MEDICAL IMAGING SYSTEMS AND THERAPEUTIC EQUIPMENTS Monday, 10th April, 2017, Time: 2:00 pm - 5:00 pm

Total Marks: 70

***		Note: The figures to the right indicate maximum marks.	
Q-1.	1.	Superposition of the three dimensional information onto single plane makes diagnosis confusing and difficult, This is the limitation of (a) X-ray CT (b) Ultrasonic (c) X-ray (d) NMR	1
	2.	Stationary anodes are used inx-rays. (a) arm (b) foot (d) thigh (d) dental	1
	3.		1
	4.	Lateral Resolution is dependent on, depth and focusing. (a) beam width (b) voltage (c) attenuation coefficient (d) frequency	1
	5.	If R < 60 bpm then it is known as	1
	6.	is a procedure to destroy tissue using a high-frequency electric current applied with a needle like electrode. (a) Desiccation (b) Fulguration (c) Cut (d) Coagulation	<u>,</u> 1
	7.	In therapy, shortwave and microwave are types of (a) diathermy (b) thermal imaging (c) lithotriptor (d) ventilator	1
	8.	Lamp that acts as an energy source by emitting white light, which excites ruby atoms and causes them to emit photon is (1) reflecting cylinder (1) cooling cylinder (11) laser beam (12) flash tube	1
Q-2.		Write in brief (Attempt any 7)	
	(1)	Why Tungsten is used as target material in X-ray?	2
	(2)	What is the limitation of Single phase supply for X-ray circuits?	2
	(3)	Which factors are responsible for thermal damage?	2
	(4)	Which atoms are best suited for MRI? Why?	2
	(5)	Write the equation of Larmor Frequency with interpretation.	2
	(6)	Why AEDs require self-adhesive electrodes instead of hand held paddles?	2
	(7)	Which problems are associated with Pacemaker leads?	2
	(8)	When should Diathermy be used?	2
	(9)	List applications of Argon LASER.	2

Q-3.	(a)	Draw the block diagram of X-ray machine and explain automatic exposure control (AEC).	6
	(b)	Discuss high voltage and high frequency generator with necessary figures. OR	6
	(b)	Discuss different components of X-ray computed tomography in brief.	6
Q-4.	(a)	Write basic equation of Ultrasound. Draw block diagram of Pulse echo system and explain its working.	6
	(b)	Explain basic principle of Thermal imaging and explain Thermo graphic equipment. OR	6
	(b)	With neat block diagram explain NMR components.	6
Q-5.	(a)	Discuss types of external Pacemaker.	6
	(b)	Write the basic principle of Electro surgery and discuss its types. OR	6
	(b)	List types of electrodes used for Defibrillation and explain DC defibrillator.	6
Q-6	(a)	Write a note on Pulsed Ruby LASER.	6
	(b)	Explain microprocessor controlled Ventilator.	6
	(b)	OR What is the use of Lithotriptor? Explain with neat diagram Lithotriptor system.	6

SEAT	No	
------	----	--

[91]

No. of Printed pages: 3

SARDAR PATEL UNIVERSITY M.Sc. (SEMESTER-IV) EXAMINATION

2017 Saturday, 15th April 2.00 p.m. to 5.00 p.m.

INORGANIC CHEMISTRY: PS04CINC03

(INORGANIC POLYMERS AND INORGANIC SPECTROSCOPY)

Note: Numbers at the right show full marks. **TOTAL MARKS: 70**

Q.1. Answer the followings:	8
1. Polysiloxanes have connectivity	of
(a) One,	(b) Two,
(c) Three,	(d) Four
2. When (NPCl ₂) ₃ is heated at 250°c	C, it undergoes
(a) decomposition reaction,	(b) elimination reaction,
(c) polymerization reaction,	(d) addition reaction
3. On increasing the strain in a ferr	ocenophane, the ring opening polymerization will take place
at	
(a) lower temperature,	(b) higher temperature,
(c) lower pressure,	(d) higher pressure
4. The void/ pore size in MOFs can	be varied by varying
(a) the size of metal ion,	(b) the size of linker,
(c) the solvent polarity,	(d) the reaction temperature
5. In EPR, the transition between el	ectron's spin energy levels takes place by absorbing radiation
of	•
(a) radio frequency region,	(b) infra-red region,
(c) microwave region,	(d) X-ray region
6. The EPR spectrum of H ₂ ^{+,} ion rac	lical shows line(s).
(a) one,	(b) two,
(c) three,	(c) four
7. The most extensively studied ele	ment in Mössbauer spectroscopy is
(a) Fe^{57} ,	(b) Co ⁵⁷ ,
(c) Sn ¹¹⁹ ,	(c) Ni ⁶¹

Q.5.A. Explain the theory of EPR spectroscopy and discuss the differences between	EPR and
NMR spectroscopy.	6
B. Discuss the electron-nuclear hyperfine interactions in EPR spectroscopy.	6
Or	
B. Discuss the various applications of EPR spectroscopic technique.	
Q.6.A. Discuss the principle of Mössbauer spectroscopy.	6
B. Explain the Quadrupole and Magnetic splittings in Mössbauer spectroscopy.	6
Or	
B. Discuss the instrumentation and applications of Mössbauer spectroscopy.	

8. In Mössbauer spectroscopy, Quadrupole splitti	ng reflects the interaction between the n	nuclear energy
levels and		0,
(a) external magnetic field,	(b) surrounding electric field gradie	ent,
(c) magnetic moment of un-paired electron,	(d) none of these	ŕ
Q.2. Answer any <u>SEVEN</u> of the followings:		14
1. Define isotactic, syndiotactic and atactic poly	mers giving examples of polysilanes	,
2. Write a short note on solubility parameter and		
3. Write about the Phyllosilicates and Tectosilic		
4. What are ferrocenophanes? Give some examp		
5. Write the mechanism of ring opening polyme		
6. Explain the electron Zeeman Effect.	r	•
7. Predict the EPR spectrum of [•] CH ₃ radical.		
8. Define the Mössbauer effect.		
9. Explain the isomer shift (δ) in Mössbauer spe	ectroscopy.	
Q.3.A. Discuss the classifications of inorg	ganic polymers based on conne	
B. Answer the following:		6
· ·	sois of line and the state of t	6
 Write the various methods for the synthe Write the synthesis of polysiloxanes. 	isis of finear polyphosphazenes.	
Or		
B. Discuss about various sulfur based polyr	ners.	
Q.4.A. What are Coordination Polymers? Discrepolymers.	uss about the classifications of the C	Coordination
•		6
B. Discuss the various methods for the synt	hesis of ferrocene based polymers.	6
Or		
B. What are Metal Organic Frameworks (Mof MOFs.	IOFs)? Discuss the synthesis and the	applications

CIL	ΔT	No.	1.1	7.	÷.	
الباري	- A.E.	770.			_	

No. of printed pages = 4

[97]

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar 388 120

(CBCS) M. Sc. Examination, Semester - IV PS04CINC03: ROBOTICS & FUZZY LOGIC

Saturday, 15th April, 2017, Time: 2:00 pm - 5:00 pm

Note:	Assi Ansi	Total Marks: 70 res to the right indicate maximum marks. ime suitable data wherever required and clearly mention the same. wer to the point. t sketches can replace a good amount of words	
Q-1	(1)	Multiple Choice Questions. Which equation is used to find out gripper force? (a) $\mu \times n_{fx}F_g = W$ (b) $\mu \times n_f = WF_g$ (c) $\mu \times n_{fx}W = F_g$ (d) $\mu \times n_{fx}F_g = Wg$	(01)
	(2)	Which of the following is found using forward kinematics? (a) length (b) joint angle (c) end position (d) twist angle	(01)
	(3)	In which year Programmable Universal Machine for Assembly (PUMA) Robot was developed? (a) 1971 (b) 1978 (c) 1966 (d) 1981	(01)
	(4)	What is the full form of SCARA Robot? (a) Selective Compliance Authority Robot arm (b) Selective Complex Assembly Robot arm (c) Selective Compliance Assembly Robot arm (d) Selective Compliance Adjusted Robot arm	(01)
	(5)	Which is not the part of robot anatomy (a) arm (b) End effector (c) wrist (d) all of the above	(01)
	(6)	Jacobian matrix is related to (a) velocity (b) distance (c) time (d) all of the above	(01)
	(7)	P ∨ P = P and P ∧ P = P is property. (a) negation (b) associativity (c) absorption (d) idempotence	(01)
	(8)	A logical formula comprising $\bf n$ propositions will have interpretations in its truth table. (a) 2	(01)

Q-2	er di Tillay	Short answer type questions- attempt any 7	
	(1)	What are the basic components of an industrial robot?	(02)
	(2)	Draw TRL and TRR configuration.	(02)
A	(3)	Define work volume and load carrying capacity of robot.	(02)
te Mi	(4)	Explain the different types of joints used in robots.	(02)
	(5)	Write down D-H matrix.	(02)
	(6)	Explain degeneracy and dexterity.	(02)
	(7)	Define the terms Dilation and Normalization.	(02)
	(8)	What is Fuzzy logic? What are its advantages?	(02)
	(9)	Define the terms Dilation and Normalization.	(02)
Q-3	(a)	Discuss the difference between fixed, flexible and programmable automation.	(06)
	(b)	Illustrate the geometric interpretation of the rotation transformations. OR	(06)
	(b)	A frame T is rotated 90° about Z- axis, then translated 3 and 5 units relative to n- and o- axes respectively, then rotated another 90° about y-axis. Find the new location and orientation of the frame.	(06)
		$T = egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & -1 & 1 \ 0 & 0 & 0 & 1 \ \end{pmatrix}$	
-			
		이번에 있어요 하는 점심하는 사람들이 있다. 그런 이 사용하는 사람들은 회사인상이 하는데	
Q-4	(a)	Consider robot shown in figure 1. Using D-H notation Construct 1. Set of robotic coordinate frame 2. A table for joint parameter 3. Each joint individual matrix	(06)

Figure 1 Cartesian manipulator with spherical wrist.

- (b) A point P(8,5,7)^T is attached to a frame (n,o,a)and is subjected to the (06) transformations described. Find the coordinates of the point relative to the reference frame at the conclusion of transformations.
 - (1) Rotation of 90° about the n-axis,
 - (2) Followed by a rotation of 90° about the o-axis,
 - (3) Followed by a translation of [4,-3,5]

OF

(b) Explain the vacuum cups gripper with advantage and disadvantage.

(06)

Q-5 (a) Write down forward and inverse kinematics equation for three link robot. Consider (06) link length L1, L2 and L3 and also link angle Ø1, Ø2 and Ø3

(b) Explain in details vacuum and magnetic gripper.

(06)

(06)

OŔ

- (b) Suppose the following frame was subjected to the differential translation of (06) $d = [1 \ 0.0.5]$ units and differential rotation of $\delta = [0.0.3 \ 0]$
 - (a) What is differential operator relative to the reference frame?
 - (b) What is differential operator relative to the frame A?

$$A = \begin{pmatrix} 1 & 0 & 0 & 8 \\ 0 & 0 & 1 & 4 \\ 0 & -1 & 0 & 14 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Q-6 (a) Let A and B be the fuzzy sets for $x_1, x_2, x_3, x_4, x_5, x_6$, If A = { $(x_1, 0.4), (x_2, 0.2), (x_3, 0.4), (x_4, 0.1), (x_5, 0.8), (x_6, 0.9)$ } and B = { $(x_1, 0.3), (x_2, 0.8), (x_3, 0.5), (x_4, 0.2), (x_5, 0.6), (x_6, 0.5)$ }
 - Find (i) A B and $B \cup B^c$,
 - (ii) A ∪ B and A ∩ B(iii) prove that: (A ∪ B)^c = A^c ∩ B^c
 - (b) Discuss methods for determining membership functions in detail. (06)

OF

- (b) (i) Define the terms Tautology and Contradiction. (06) Is $(P \Rightarrow Q) \land (Q \Rightarrow P) = (P = Q)$ a Tautology? Justify
 - (ii) Verify De Morgan's laws. $\sim (P \lor Q) = (\sim P \land \sim Q) \& \sim (P \land Q) = (\sim P \lor \sim Q)$

[92]

SARDAR PATEL UNIVERSITY
M. Sc. (Semester-IV) Examination
Saturday, 15th April 2017
2.00 PM to 5:00 PM

Industrial Polymer Chemistry, PS04CIPC03

(Processing of Polymers)

Total Marks: 70

Q-1 Answer the followings:

[8]

- 1. State with low viscous character and high elastic character is called
 - (a) viscoelastic
 - (b) elastoviscous
 - (c) elastoplastic
 - (d) viscous
- 2. Tumbling blenders are suitable only for
 - (a) batch mixing
 - (b) continuous mixing
 - (c) batch mixing and continuous mixing
 - (d) none of the above
- 3. The zone of a screw that follows the feed zone is called the
 - (a) compression zone
 - (b) die zone
 - (c) head zone
 - (d) metering zone
- 4. When some resins are used in extrusion, the resins are removed from the extruder before shut down, this process is called
 - (a) blending
 - (b) premix
 - (c) purging
 - (d) compounding
- 5. Which of the following polymers need special pre-treatment without which the adhesive could not perform the expected role.
 - (a) fluorocarbons
 - (b) silicones
 - (c) epoxies
 - (d) urethanes
- 6. In which of the following foam methods, the foaming results by the formation of a gas through the breakdown of foaming agents or blowing agents.
 - (a) chemical foaming
 - (b) physical foaming
 - (c) an addition of hollow glass spheres
 - (d) chemical foaming

(P.T.O)

	(b)	With a neat sketch diagram explain the filament winding process,	[6]
	<i>a</i> >	OR	
	(b)	Describe the manufacturing process of parquet flooring blocks.	. [6] [6]
Q-4	(a)	Give a suitable sketch and explain the process of wires and cable coating.	[6]
		(i) High Speed Mixer (ii) Paddle Mixers	[~]
	(b)	Write about the following:	[6]
	<i>(</i> 1 \	OR	
	(b).	What is the importance of thermal properties of polymers in melt processing?	[6]
Q-3	(a)	Describe briefly about two roll mill mixer.	[6]
	(ix)	Define the term: Bulk factor and give its importance.	
	(viii)	Classify the calenderers.	
	(vii)	Give basic difference between injection blow molding process and extrusion blow molding process.	
	(vi)	What is the appropriate short size range in injection molding?	٠, .
•	(v)	Write the advantages and disadvantages of transfer molding process.	
	(iv)	List out the various coating methods.	
	(iii)	Give schematic representation of hand lay-up process.	
•	(ii)	Differentiate internal lubricants and external lubricants.	
	(i)	List out the important features of the banbury mixer.	[14]
Q-2	Ans	swer the followings (Any SEVEN)	
		The final choice for any product is based on the most favourable balance of (a) design (b) fabrication (c) total cost or selling price of the finished product (d) all of the above	
	8.		
	7.	Density Gradient Column method is performed according to the (a) ASTM D-238 (b) ASTM D-1238 (c) ASTM D-1505 (d) ASTM D-1895	

	forming process in detail.	
(b)	What is meant by gas assist injection molding? With a neat sketch diagram explain the five stages needed to make an automotive grab handle.	[6]
	OR	
(b)	Write about stretch blow molding process.	[6]
(a)	Write briefly on the following finishing operations:	[6]
	(ii) Scrapping	
(b)	Explain briefly about the design limitations of plastic materials.	[6]
	OR	
(b)	Describe the following scratch resistance tests: (i) Bierbaum test (ii) Kohinoor pencil test	[6]
•	(b) (a) (b)	explain the five stages needed to make an automotive grab handle. OR (b) Write about stretch blow molding process. (a) Write briefly on the following finishing operations: (i) Filling (ii) Scrapping (b) Explain briefly about the design limitations of plastic materials. OR OR (b) Describe the following scratch resistance tests: (i) Bierbaum test

. , **\hat{\lambda}**

SEAT	No
------	----

SARDAR PATEL UNIVERSITY M. Sc. – Semester-IV A-45/A-46/(Organic/Analytical/Inorganic/Physical/Industrial polymer Chemistry)

Examination

Monday, 10 April, 2017	
(PS04CORC01/PS04CANC01/PS04CINC01/PS04CPHC01/PS04CIPC01)	
Spectroscopy - II Time: 02:00 P m, to 5:00 p.m. Marks	70
Time, 02:00 Lim to 5:00 pins	
Q. 1 Answer the following multiple choice question.	[8]
 Which of the following organic compound shows 4 diagonal peaks in ¹H-¹H COSY experiment? (a) neopentane (b) isobutane (c) cyclobutane (d) n-butane Which of the following NMR experiment shows signal for only tertiary carbon? (a) DEPT-45° (b) DEPT-90° (c) DEPT-135° (d) DEPT-180° The Spin-lattice relaxation is designated by, (a) T₁ (b) T₂ (c) R₁ (d) R₂ 	: }
4. The value of geminal coupling constant is zero at angle.	
(a) 90° (b) 180° (c) 125° (d) 160°	
 5. Non-integral m/z value indicates presence of (a) fragment ions (b) meta stable ions (c) impurity ions 6. The number of fundamental vibrations of CO₂ molecule is (a) 4 (b) 5 (c) 3 (d) 6 7. Which of the transition is not possible in UV spectroscopy? 	
 (a) n→σ* (b) σ→σ* (c) π→σ* (d) π*→σ* 8. In Mass spectra the pattern of M: M+2:: 100: 98 indicates the presence of (a) 2 Br (b) 1 Cl (c) 2Cl (d) 1 Br 	
Q. 2. Explain the following. (Any Seven) 1. In IR, the C=C stretching band is observed in fluoroacetylene while it is absent in	[14]
 Draw the energy diagram for various electronic transitions observed in UV. Sketch the proton coupled and decoupled ¹³C NMR spectra for n-hexane. Explain why the ¹³C NMR spectra are usually studied as a proton decoupled spectra Sketch the PMR spectrum for m-dinitrobenzene by taking approximate δ value for estingle and showing appropriate multiplicity. In PMR, at room temperature cyclohexane gives one signal while at -70 °C it gives signals. Explain. How will you explain the formation of an ion at m/z-94 in the mass spectrum of phese. Do the mass fragmentation of 2- pentanone based on Mclafferty rearrangement. Sketch ¹H-¹³C HETCOR spectrum for ethyl chloride by taking approximate δ value each signal. 	each two enetol.

Q. 3. A. (i) Calculate the stretching frequency for C-H bond. [3] (ii) Write the short note on auxochromes and chromophores. [3] B. Discuss the important characteristic vibrations observed in the IR spectra of [6] ketons and ester. B. Calculate λ_{max} for the following compounds. [6] 1 2 Q. 4. A. (i) List the methods used for simplification of PMR spectra. Discuss any one of them. (ii) What is spin-spin coupling in PMR? Discuss vicinal and geminal coupling [3] in details. B. (i) Explain nuclear overhauser effect in PMR. How will you distinguish following [3] isomers using NOE-PMR spectra.? (a) (b) (ii) Sketch the expected PMR spectrum for pure ethanol and show that it is an AMX system with two different coupling constants. B. (i) Write a short note on D₂O exchange in PMR. 3 (ii) Draw the structure for all the three isomers for difluoroethylene and show L3) that in each isomer the protons are chemically equivalent but magnetically non equivalent Q. 5. A. Do the ¹³C NMR chemical shift calculation for the following molecules. [6] an B. Answer the following. (i) Calculate the chemical shift value for carbon signals and sketch the proton [3] coupled and decoupled 13C NMR spectra for phenyl acetate. (ii) Indicate the signals (with approximate δ value and multiplicity) observed for [3] the following solvents in their ¹³C NMR spectra. (i) Methanol-d₄ (ii) Acetone- d_6 (iii) Benzene-d₆

- B. Answer the following.
 - (i) Sketch the ¹H-¹H COSY spectrum for 3-heptanone by taking approximate δ value for each signal.
- [3]

[3]

(ii) Show how will you differentiate the following stereoisomers (A and B) using proton decoupled ¹³C NMR spectra.

(B)

- Q. 6. A. Do the mass fragmentation for the following molecules.

(A)

6

- B. Answer the following.
 - (i) Write a short note on McLafferty rearrangement.

- [3]
- (ii) Discuss Field desorption (FD) and fast atomic bombardment (FAB) techniques in mass spectroscopy.
- [3]

- B. A compound has molecular formula $C_{11}H_{12}O_2$. It gives the following spectral data. Interpret the spectral data determine the structure of the compound.
 - IR: 3030, 2940, 1712, 1639, 1585, 1200, 770 and 710 cm⁻¹

¹H NMR

¹³C NMR

Signal (δ)	Multiplicity	Protons
1.31	Triplet (<i>J</i> =7.1 Hz)	3H
4.20	Quartet (<i>J</i> =7.1 [<i>Iz</i>)	21-1
6.43	Doublet (<i>J</i> =15.8 Hz)	1H
7.24-7.57	Multiplet (J=7.1 Hz)	5H
7.67	Doublet (<i>J</i> =15.8 Hz)	1H

¹³ C (δ)	DEPT 135
14.3	+ Ve
60.4	- Ve
118.4	+ Ve
128.4	+ Ve
128.1	+ Ve
128.9	+ Ve
130.2	+ Ve
134.5	
144.5	+ Ve
166.8	

Mass(m/z): 176,131 (base peak), 103, 77, 51

And the process of the control of th

mental and the second of the s

CHARACTERISTIC PROTON CHEMICAL SETTIS

Characteristic Infrared Absorption Frequencies

Bond	Compound type	Frequency range, cm
C-H	Alkanes	2850-2960
C		1350-1470
С-Н	Alkenes	3020-3080 (m)
V		675-1000
C-H	Aromatic rings	3000-3100 (m)
O 11		675-870
C-H	Alkynes	3300
	Alkenes	1640-1680 (v)
C≅C	Alkynes	2100-2260 (v)
Č=C	Aromatic rings	1500, 1600 (v)
C-O.	Alcohols, ethers, carboxylic acids, esters	1080-1300
C=O	Aldehydes, ketones, carboxylic acids,	1690-1760
0 0	esters	
H-O	Monomeric alcohols ,phenols	3610-3640 (v)
0.11	Hydrogen bonded alcohols, phenols	3200-3600 (broad)
	Carboxylic acids	2500-3000 (broad)
N-H	Amines	3300-3500 (m)
C-N	Amines	1180-1360
C≞N	Nitriles	2210-2260 (v)
-NO ₂	Nitro compounds	1515-1560
2403	11,000	1345-1385

Characteristic absorption for dienes

77	1.3
Base value for heteroannular diene	214
Base value for homoannular diene	253
Increments for	233
Double bond extending conjugation Alkyl substituent or ring residue	+ 30
Execusive double hand	+5
Exocyclic double bond	+.5
Polar groupings: OAc	+ ∙0
OAlk	+6
SAIk	+ 30
Cl, Br	. 5¢ -i-5
N(Alk),	
Solvent correction	+60
	+0
	$\lambda_{calc} = Tota$

Characteristic absorption for substituted benzene derivatives

ArCOR/ArCHO/ArCO,H/ArCO,R	•	(nm)
Parent chromophore: Ar = C ₆ H ₅		
G = Alkyl or ring residue, (e.g., ArCOR G = H, (ArCHO))	246
G = OH OAB (A-GOM)		250
G = OH ₁ OAlk, (ArCO ₂ H and ArCO ₂ R) increment for each substituent on Ar:		230
-Alkyl or ring residue	o-, m-	+3
OH,OCH ₁ ,OAlk	p.	+10
on, work, work	0-, m-	+.7
-O- (oxyanion)	p-	+ 25
o (ox) anon	o-	4 11
	m.	± 20
—Ci	p-	1-78*
Ο Ι	0-, m-	+ 0
—Br	p -	+ 10
2.70	0-, m-	·1· 2
NH ₂	p.	+15
	o-, m-	+ 13
-NHCOCH,	p-	+ 58
-	o-, m-	+ 20
NHCH,	P~	+ 45
-N(CH ₃),	p-	+ 73
	0-, m-	+ 20
	p-	+ 8.5

Characteristic absorption for α, β-unsaturated carbonyl compounds

	•		
β α β	C≔O :	and $\delta - C = C - C$	β α
Base values			
			(nm)
Acyclic α,β-	unsaturated	ketones	`_: -
21Y-memocre	ed cyclic α, μ	J-unsaturated ketone	8
		β-unsaturated keton	4.0
			202
α,β-Unsatur	ated aldehyd	es	210
			210
α,β-Unsatur;	ited carboxy	lic acids and enters	195
Increments for Double bond	extending c	Oningation	
Alkyl group,	riog residue	g .	1.30
- •		B	+ 10
	•	y and higher	+ 12
Polar groupin	es: —OH	t with tuldift	4-18
	033	β	+ 3.5
		δ	+ 30
	OAc	=	4.50
	OMe	α, β, δ	+ 6
	OMC	di .	+35
		β	±30
·	•	γ .	+17
	-SAlk	=	` +31
	Cl	β	+85
	۳.۲.)	u	+15
	Вг	β	+12.
	J3 J	α	±25
	NIO	β	+30
	NR ₂	β	+95
Exocyclic dou	ble bond		
Homodiene co	1mb/mehle		4.5
	content,		ા ગુજૂ

 ^{13}C shifts for terminal and internal systems

¥ &	Z Z Z
Torontesi	Internet

	1 CANDERSON						
	, is	<u>ε</u> β		β		β	
¥	Tenninsi	Battered	Yerminel	isternal			
CH,	+ 9	+ 6	+10	+ 8	-2		
CH-CH,	+20		+ 6		-05		
C=CH	+ 45		+ 5,5		-35		
COOH	+21	+16	+ 3	+ 2	-2		
COO.	+25	÷20	+ 5	+ 3	-2		
COOR	+20	+ 17	+ 3	+ 2	~2		
coa	+33	+28		4 2			
CONH	+22		+ 2.5		-0.5		
COR	+30	+24	+ 1	+ 1	~2		
CHO	+31		0		2		
Phenyl	+23	+17	* 9	+ 7	- 2		
OH.	+48	+41	+10	+ 8	-5		
OR	+ 59	+51	+ 8	+ 5	4		
OCOR	+51	+45	+ 6	+ 5	3		
NH,	+29	+24	+11	+10	-5		
NH,	+ 26	+24	+ 8	+ 6	-5		
NHR	+37	+ 31	+ 8	+ 6	4		
NR,	+42		+ 6		-3		
NR ₃	+31		+ 5		-7		
NO ₁	+63	+ 57	+ 4	+ 4			
CN	+ 4	+ 1	+ 3	+ 3	-3		
SH	+11	+11	÷ 12	+11	4		
SR	+20		+ 7		~- 3		
F	+ 68	+ 63	+ 9	→ 6	4		
a	+31	+32	+11	+10	-4		
Dr	+20	+25	+11	+10	-3		
Į,	- 6	+ 4	+11	+ 12	-1		

¹³C Shifts for some linear and branched chain alkanes

			,		وجندوم
СепфоннА	Cı	C-2	C3	C4	C3
Methano	-2.3			4.54	ed S
Ethane	5,7		•		
Propens	15.8	163	15.8		٠.,
Butano	13.4	25.2	25.2	1	d.
Pentane	13.9	22.8	34.7	22.8	13.9
Hexage	14.1	23.1	32.2	32.2	23.1
Heptune	14.1	23.2	32.6	29.7	32,6
Octane	14.2	23.2	32.6	29.9	29.9
Nogane	14.2	23.3	32.6	30.0	30.3
Decane	14.2	23.2	32.6	31.1	30.5
Sections	24.5	25.4			
Isoponiane	22.2	31.1	32.0	11.7	
Isohaume	22,7	28.0	42.0	20.9	14.3
Neopentane	31.7	28.1			
2.2-Dimethylbutane	29.1	30.6	36.9	8.9	
3 Mothylpontane	11.5	29.5	36.9	(18.8.	
				3-CF	l,)
2.3-Dimethylbutane	19.5	34,3			
2.2.3 Trimethylbutane	27.A	33.1	38.3	16.1	. 4.
2.3-Dimethylpentane	7.0	25.3	36.3	(14.6,	
				` 3 CI	W.
					an mountain formation

¹³C shifts for substituted benzenes Base value for benzene is 128.5 ppm

	C-I (Atterferance)	C3	C-3	04	C of Beholdment (spin tron 1745)
R	0.0	Q.O	. 00	0.0	
CH,	+9,3	+0.7	-0.1	-29	21.3
CH ₂ CH ₄	+15.6	-05	ão	-2.6	
CH(CH),	+20.1	-20	6.0	-25	292 (CH), US (CH)
C(CHP)	+22.2	-34	-0.4	-31	34.4 (CH), 24.1 (CH ₂)
CH=CH,	+9.1	~2.4	+0.2	-0.5	34.5 (C), 31.4 (CH ₄)
CHICH!	~5.B	+69	+0.1	+0.4	137.1 (CH), 113.1 (CH ₄)
C.H.	+12.1	-1.8	-01	-1.6	84.0 (C), 77.8 (CH)
CHIOH	+13.3	-0.8	-Õ.6	-0.4	64.5
CH'OCCH'	+7.7	~0.0	~ãõ	~0.0	20.7 (CH ₄), 66.1 (CH ₄),
ð		4 4 4 4 4			170.5 (CO)
DH	+26.6	-12.7	+1.6	-7.3	•
DCH,	+31.A	-14.4	+1.0	-7.7	
ЭC _e ri,	+29.0	-9,4	+1.6		54.1
ွ ိ		The said	¥1.6	- 5.3	
обси, -	+ 22.6	-7.1	-0.4	~3.2	289 (011) 1487 (0
		9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	***		23.9 (CH ₄), 169.7 (C==O
	+8.2	+12	+0.6	+ 5.8	192.0
				1 340	1920
CH,	+7.8	-0.4	-0.4	+ 2.8	M 6 (CR) 1062 (C
}		•••	4.1	. 440	24.6 (CH ₄), 195.7 (C==O
CH,	+9.1	+15	0.2	+3.8	196.4 (C==Q)
}				7.300	race (Com())
cr,	~5.6	+1.8	+0.7	+6.7	
		,	. 4.1	1 0.7	•
юн	+2.9	+1.3	+0.4	+4.3	120 m
•		- 54	1 004	74.3	16&D
осн,	+2.0	+1.2			
)	• ••••	¥1.2	-0.1	+4.8	51.0 (CH ₃), 166.8 (C==O)
o di					168.5
	+4.6	+29	+0.6	÷ 7.0	•
)			-	- ***	
NH,	,				
asN	+5,0	- 1.2	0.0	+3.4	
H,	-160	+3.6	÷ 0.6	+4.3	119.5
(CH ₂),	+19.2	-12.4	÷ 1.3	-9.5	
Q Q	+22.4	-15.7	÷0,8	-11.8	40.3
нссн,		- "			
O ₁	+11.1	9.9 	+02	-5.6	
= -C=-∪ ∧	+19.6	~\$3	+0.9	+ 6,0	
	+ 5.7	-3.6	412	-2.8	129.5
I	+35.1	-14.3	+ 0.9	~4.5	
	+6.4	+0.2	+1.0	-20	
•	~5.4	+3.4	+22	-1.0	
r	-32.2	+9.9	+26	-73	
rs,	+2.6	-3.1	+0.4	+3.4	
H.	+2.3	+0.6	+0.2	-3.3	
CH ₃	+ 10.2	-18	+0.4	-3.6	15.9
JNH,	+153	-29	+0.4	+33	~
(CH,),	+13.4	+4.4	~1.1	-1.1	

Influence of functional group X on the chemical shift position (δ) of nearby carbons in alkane chains

•	· / .	y-şhift		β-shift 	γ-shift
X	<i>х</i> —сн _т — <i>х</i>	−CII− .	R X-Ç- R	•	
	l ^o or	2° or	35		
	9	6	3	9	-3
R: see table 3.11		:		*	~ 6
axial —CH ₃	1	****	uryi	5	0
equatorial—CH ₃	6	riants .	p.489	9	• •
(in cyclohexanes)			u 24	7	-2
-CH =CH ₂	7 <u>1</u>	16	12		-3
C≡CH	4	-	\$177.	3	-3
-CoHs, -Ar	23	17	11	10	
-r	70	Regist	,	8	-5
~-(1	31	35	42	10	~.4
—Br	19	28	37	[1	
edura I	-7 to 20	•••	ler 	11	4
-NH2 -NHR -NR2	29	24	18	11	~~ ~ 5
-NO ₂	62	₽~	_{Sept} -an	3	0
-NHCOR, -NRCOR	10	124	شدو	0 7	3
-NH3*	25	-24	4.7		ent.
-CN	3 (4	:	2 .	
-sii	2	444	4.6	2	347
-OH	50	45	40	y 10	**** *
-OR	50	24	17	7	ma.
OCOR	52	50	45	2	de 4
-cooncoorcon	20	16	13	2 2	
-cor,-cho ,	30	24	17	3	~~
—\$O₃H,—\$O₂N⟨	50	•	- ;	. 3	

Influence of functional group X on the chemical shift positions (8) of nearby carbons in alkene groups and benzene rings

Į.	dase values:	ethylene	(6 123)	and	benze	ne (6 128)	
		x c−1		Ž		S-orth	to
			kenes		Ber	izenes	
	What have been dearly and the same and the s	(* mm] .	C-2	C-1 (4)50)	ortho	meta	<i>ți</i> ara
-сн,		10	s &	ĝ			
		16	€	15	0	O	-2
*		23	-8	21	0	. 0	· 2
-CH = CH,		15	-6	9	Q	0	-2
-CH = CH		une	454		0	· Q	2
-C ₆ H ₅ ,Ar		13	-11	-6	4.	0	. 0
f		25	-34	13	raks. 🖁	1	
-CI		3	~-6	35] 4	1 .	5
-Br		8	~~· 1	Ğ	0	j	~·2
4		~38	7	u. 5	3	2	-2
NH ₂		war film		=32	10	3]
NHR			free.	18	~13	· į	-10
NR ₂		ilen.	M-5	20	- 14	1	10
NO,		on On one	ra.	22	16	1	₩10
NHCOR, -NRCOR		22	.44	20	5	1	6
IN		***	et c	10	·7	1	·22 4
SH	•••	-15	15	-16	4	. 1	6
HC			Made	4	1	1	~3
OR	7	43		27	-13	1	~3 ~7
COR		29	~39 .	30	-15	. - 1	8
	./	18	~27	23	~6	1	2
OOH,—COOR,—CO OR,—CHO	Y.	4	9	2	2	0	
0 ₂ н, —so ₂ n(14	13	9	1		5
Me ₃ SO ₃ N '		rion;		16	0	1	6
			134	14	1.6	0	4 -
Ar _a			מיני	9	3 3	0	-1

No. of pages: 02

SARDAR PATEL UNIVERSITY M.Sc. Semester-IV (Organic Chemistry) Examination Saturday, 15th April -2017 PS04CORCO3-Stereochemistry of Organic Compounds

Time:	: 02:0	00pm to 05:00pm	Marks: 70
Q.1		Select the correct answer.	08
	1	The characteristic must be required for r	esolving agent
		(a) Pure form	
		(c) High Molecular weight	
	2	In axial haloketone rule, Vertical plane 'number	A' passing through Carbone
		(a) 1 & 4	(b) 2
		(c) 4	
	3	Isomers that are mirror images of each o	ther are called
s.		(a) Enantiomers	(b) Resolution
		(c) Diastereomers	(d) Free radical
	4	The Enzymes are With molecular	weight of 12000 - 100000
		Daltons.	
		(a) vitamins	(b) Proteins
		(c) Carbohydrates	(d) Lipid
	5	CD and ORD spectrum provide importar secondary structures of	nt information regarding the
		(a) Proteins	(b) RNA
		(c) DNA	(d) Above all
	6	In Cram's rule, the incoming group prefe	
		plane containing the group.	
		(a) Medium	(b) Large
		(c) Small	(d) Above All
12.	7	Absolute chiral synthesis involve the form	
		(a) Optically inactive	(b) Optically active
		(c) Resolving agents	(d) None of these
Ę.	8	In case of formation of double helix, app $G \equiv C$ is	roximate stabilization energy of
		(a) 30 KJ/mole	(b) 70 KJ/mole
		(c) 50 KJ/mole	(d) 60 KJ/mole

Q.2		Answer the following(Any Seven)	14
	1 2 3 4 5 6 7 8 9	Define the terms: (i) Meso Compound (ii) Racemic Mixture. Discuss the reaction for generation of first chiral center. Draw the structure of bicycle [2.2.0] hexane and bicycle [2.2.1] heptane. Discuss about the Prelog's Rule. Discuss the Conrotatory motion in electrocyclic reaction with example Discuss the Resolution of Aldehyde and ketone. Draw the all conformation of cyclononane as monocyclic compound. Define the term "cotton effect" and give it's importance. What is Stereo Selective Reaction? Give suitable example.	
Q.3	A	Write short note on Asymmetric Synthesis by	06
		(A) Wilkinson as catalysts	
	_	(B) Sharpless epoxidation	
	В	Describe in detail:	06
		(A) Resolution through formation of diastereomers.	
		(B) Resolution by chromatography	
		and the state of the control of the	
	В	Give the experimental procedure for resolution of (±) 2-Octanal.	06
Q.4	A	Draw the potential energy diagram of n-butane, on the bases of different conformers.	06
	В	Write a note on conformational features of six member heterocyclic's	06
		OR OR	
	В	Draw the conformations of cycloheptane and cyclooctane under	06
		monocyclic compound	
0.5	٨		0.0
Q.5	Α	Discuss the correlation diagram of [2+2] cycloaddition reaction for ethene to cyclobutane.	06
	В	Write a note on suprafacial and antarafacial in cycloaddition reaction.	06
	-		VV
		OR	
	В	State in brief 1,3 and 1,5 sigmatropic rearrangement, with suitable	06
		examples,	
Q.6	Α	Write a note on: ORD and CD curves.	06
	В	Draw the Structure of DNAs and discuss in detail.	0.6
		OR OR OF THE STATE	
	В	Discuss the octant rule in cyclohexanone	06

[75/A-45]

SEAT No.

Sardar Patel University M.Sc. Chemistry (Fourth Semester) Examination Tuesday, 18th April 2017 Medicinal Chemistry (PS04ECHE01)

Note: (i) Figi	m to 5:00 pm are to the right indicates Marks empt all Questions	Total ma	arks: 70
Que:1	Choo (i)	ose the correct answer from the follower betermination of drug efficacy is be	owing multiple choice of questions.	[8]
	(-)	(a) Only effective level	(b) Only toxic level	
		(c) Both effective and toxic level		
	(ii)	Which of the following produce give	ves metabolism process in Blood circulatory systems	0
	` '	(a) Antiviral nucleoside analogs	(b) Extracellular	?
		(c) Intracellular	(d) None of these	-
	(iii)	• •	ves response to a stimulus in internal or external	
		(a) Channel linked	(b) Enzyme linked	
		(c) Sensory	(d) Intracellular	
	(iv)	Which of the following antagonist l	binds to an allosteric site of receptor?	
		(a) None Competitive	(b) Uncompetitive (c) Competitive (d) Siles	nf
*	(v)	Antidepressants increase the availal		
		(a) Catecholamine at the appropria		
		(b) Catecholamine at the appropria	ite receptor sites of the heart.	
		(c) Catechol at the appropriate rece	eptor sites of the heart.	
1		(d) None of the above		
	(vi)	Excessive amount of thyroid hormodisease like	ones in the circulation are associated with a number	of of
		(a) Hypertension	(b) Anxiety	
-		(c) Goitre and Thyroidities	(d) Depression	
	(vii)	Which of the following antibiotic w	as used for inhibition of translation?	
		(a) Cephalosporin, Vancomycine	(b) Chloramphenicol, Erythromycin	
		(c) Quinolone	(d) Rifamycine	
1	(vii)	(a) Post synthetic phase	yas finished and equally divided into future sub cells? (b) Pre-synthetic phase (d) Mitosis)
ue:2	Answ	er the following. (Any seven)		[14]
	(i)	Give the importance of apparent vol	lume of distribution.	
	(ii)	Write a note on: drug elimination in	terms of renal tubular re-absorption.	
	(iii)	Give details of oxidation reaction in	drug metabolism process.	
	(iv)	What do you mean by Enzyme inhib	bition?	
	(v) (vi)	Write a note on Monoamine Oxidase	e inhibitors.	
	(vii)	Give the importance of Selective Selective the details of Kirby-Bauer test	for antibiotic	
	· /	or the details of Kitty-Dauci test	tot attautotic.	

	(viii) (ix)	Give details of Proliferating cells and Non-proliferating cells Give the examples of DNA Cross linking.	
Que:3	(a) (b)	Discuss the pharmacokinetics and brief the various routes for drug administration. Give the various factors for the drug absorption. Discuss the role of computer assisted drug design programme.	[6] [6]
	(b)	OR Answer the followings.	[6]
		 (i) Discuss the renal glomerular filtration in drug elimination process. (ii) A Doctor prescribes Theophylline (370 mg) to one patient having 70 kg weight. Dose interval is assigned for 9 hrs. [Pharmacokinetic standard for this medicine is 2.7 L/h, volume of distribution is 35L, first order elimination rate (Ke) is 0.08 h⁻¹, MEC= 10 mg/L, MTC = 20 mg/L, Bioavailability is = 1]. To find out the steady state level of drug concentration in plasma and also calculate the loading of dose. 	
Que:4	(a)	Give the characteristics of receptor in drug design. Discuss the various types of receptors with suitable examples.	[6]
	(b)	Answer the followings.	[6]
		(i) Give significance of agonist and antagonist in pharmacodynamics.(ii) Explain the binding site and their characteristics properties.	
	(b)	OR What are chemical messengers? Discuss briefly their signaling through hormones.	[6]
Que:5	(a)	Give the important role of antianxiety drugs. Discuss the metabolism of benzodiazepines and explain their structural activity report.	[6]
	(b)	Answer the followings.	[6]
		(i) Give the synthesis of Felodipine.(ii) Discuss the Cardiovascular System.	
	(b)	OR Discuss the mode of action with properties of tricyclic antidepressants drugs. Give any one synthesis of this class of drug.	[6]
Que:6	(a)	What are Antibiotics? Give their classification and discuss how different antibiotic targets take place on the cell structure of bacteria?	[6]
	(b)	Give synthesis and applications of the following drugs.	[6]
		(i) Ampicillin (ii) Ciprofloxacin	
1	(b)	What are antineoplastic agents? Give the importance of cyclophosphamide in terms of	[6]
	-	metabolism process and provide their clinical applications	r-1

***** The End *****

[H/A-46] () SARDAR PAIEL UNIVERSITE M.Sc. (Chemistry) IVth Semester Examination (CBCS)

April-2017

Tuesday, Date: 18.04.2017

Time: 2.00 p.m. to 5.00 p.m., Paper: PS04ECHE05

Subject: Environmental Chemistry, Max. Marks: 70

V.B.: i)	. The nu	mbers of the marks carried	d by each q	uestion is indicated at the end of the que	estion
		e sunable data if cor	ısıdered r	necessary and indicate the same	clearly,
Q.1	Attem	pt the following MCQ	s		1001
i)	Trans	piration is a key com	onent o	f	[80]
	a)	Oxygen cycle	b)	Nitrogen cycle	
	c)		d)	Sulfur cycle	
ii)	Which	among the following	is/are p	hysical weathering agent(s)?	
	a)	Water	b)	Ice	
	c)		d)	All	
iii)	A sam	ple of air 99.9 % drie	d contair	ns element(s) such as	
	aj	Oxygen	b) .	Nitrogen	
	c)	Argon	d)	All	
iv)	An ide	eal temperature for py	rolysis o	f solid waste is around	
	a)	1000 °C	b)	550 °C	
3	, c)	700 °C	d)	910 °C	
v)	A conv	version $N_{2(g)} \rightarrow NH_4^{+\prime}$	mediated	by soil bacteria is called	
	aj	Nitrogen lixation	b }	Nitrification	
:1		Nitrate reduction	d)	De-nitrification	
vi)	wnich	of the following is no	ot a water		
	•	COD	b)	SOMG	
vii)	c)		d }	BOD	
VIII	WILLCH	of the following is kr	nown to c	onfer odor to water?	
	a)	TON	b)	TOM	
	c).	TNO	ď)	TDS	
viii)	The fir	st component of sam	nling trai	n is	
·	a)	Collector	b)	Vacuum source	
	c)	Metering device	d)	None	
0.2	Attem	ot any <u>Seven</u>	- /	110110	[14]
i)	State '	pathway of pollutant	giving a	suitable example	[14]
ii)	introdi	uce in brief 'biospher	e' and 'ed	osvstem [*]	
iii)	State of	chemical and other so	olid waste	es, with suitable examples	
iv)	wiiati	s bio-drying process;	' State th	e mechanism of this process	
v)	Descri	be in brief phosphate	cycle, gi	ving its importance	
	State.	PAIN and PHS'.			
vii)	What o	lo you mean by acid	rain? Des	scribe mechanism of acid rain,	
viii)	A wate	a sample is reported	to have 5	.0 ppb of CaCO» Calculate this	
	COLLCEL	iti ation in molarity [(∠a = 40, C	= 12.() = 161	
ix)	Illustra	ate the term 'particul	ate matte	rs'.	
		•			

.....2

0.3 Attempt the following

a) Discuss common features and composition of the soil, describing [06] key processes of soil formation.

b) What do you understand by hydrosphere? Outline microbially—[06] mediated redox processes. Discuss typical features of iron and manganese bacteria in the water.

OR

b) What do you understand by 'NOx'? Give key reactions which are associated to sources and the sink of NOx.

0.4

a) Describe in brief

[06]

- i) Texture and permeability of the soil.
- ii) Alkalinity analysis of water
- b) List key roles of atmosphere. Write a note on atmospheric structure. [06]

OR

b) Outline: i) Incineration of MSW ii) Humic substances

Q.5

- a) Give significance of air pollution analysis. Discuss analysis of SO₂, [06] NO-NO_x, O₃ and CO in the air sample.
- **b)** Attempt the following

[06]

- i) Discuss key sources of air pollution.
- ii) Write a note on ozone depletion.

OR

b) Discuss the DOAS for air sample. A 26 L of air sample was collected and used for O_3 analysis. If the $I_2(g)$ librated from this air sample, after it was passed through KI solution, consumed 42.18 mL of $0.0978 \text{ M Na}_2S_2O_3$ in the titration, calculate concentration of O_3 in ppm and ppb, both.

Q.6

- a) Give notes on BOD and COD, in detail, Calculate theoretical COD [06] value (in mg/mL) of a solution which contains 450 mg of ethyl alcohol in 500 mL.
- **b)** Attempt the following

[06]

- i) Give an account of major components of water, and methods to analyze them, emphasizing on their significant effects.
- ii) A 200 mL water sample was treated with hydroxime hydrochloride, to reduce Fe(III) to Fe(II), and then with 1,10-phenanthroline in excess, to receive colored solution at appropriate buffer pH. The solution was diluted to 250 mL with distilled water; the % T of which was 63.1 measured at 533 nm. 1L of another solution was prepared-dissolving 72.5 mg of pure Fe wire in acid-and treated in the same way. A 10 mL aliquot of this solution was diluted to 100 mL, and the absorbance of diluted solution when measured employing the same cell had showed value 0.288. Calculate concentration of Fe in ppm in the water sample.

OR

b) List key parameters for physical examination of water, and discuss them in detail.

-0-(-c-(-n-)-d-)-0-

Manual Principal Pages: 2

[78]

SARDAR PATEL UNIVERSITY

(CBCS) M. Sc. Examination – 2017, Semester - IV PS04EINC01: Fabrication Techniques and Instrumentation Tuesday , 18th April, 2017, Time: 02:00 pm – 5:00 pm

Total Marks: 70 Note: The figures to the right indicate maximum marks. Q-1 (a) In which pump chemisorptions technique is used? 1 (b) Sorption pump (a) Getter pump (c) Cryo pump (d) Turbo molecular The Pirani gauge is a type of ______. (b) (a) Thermal conductive (b) Thermal insulation (c) Thermal inductive (d) None of them (c) In electron beam evaporation methods, is used as a 1 universally employed evaporation source. (a) Hot cathode (b) Anode (c) lons (d) a and b both (d) is a process of making metal articles by electroplating of the 1 metal onto a pattern (mold, mandrel), followed by removal of the deposited layer. (a) Electroforming (b) Rack plating (c) Barrel plating (d) Electro less plating (e) What is TCF? 1 (a) Temperature coefficient (b) Temperature coefficient of factor frequency (c) Temperature coefficient in (d) Temperature coefficient in farad farad (f) In Photolithography the light sensitive polymers is called as _____ 1 (a) Photo conductive (b) Photo voltaic (c) Photo resist (d) Mask (g) What is the function of sensitizer in photo resist? 1 (a) Absorb energy (b) Film coating (c) Film forming (d) Exposed of light Which tool is used for simultaneous control of more than one movement? (h) 1 (a) Contour cutting (b) Axial cut (c) Point to point placement (d) Stepper motor Q-2 Attempt any 7 In lithography what is positive and negative photo resist? (a) 2 List the types of electron gun used in electron beam evaporation. (b) 2 What are the applications of MOCVD? (c) 2 What is back streaming and back migration? (d) 2 (e) What are the characteristics of good photo resists? (f) Write a short note on Proximity Optical Lithography. 2 Differentiate between SEM and TEM. (g) 2 List advantages of CNC machine. (h) 2 Give the difference between lathe and milling machines. (i)

Q-3	(a)	With suitable diagram explain Electron beam evaporation.	6
	(b)	Write basic transport and growth mechanism for MOCVD. OR	6
	(b)	Describe molecular beam epitaxy for single crystal deposition with its advantages and disadvantages.	6
Q-4	(a)	With schematic diagram explain Cryo pump with its applications.	6
	(b)	Define electroplating and explain nickel electroplating process. OR	6
	(b)	Explain cold cathode ionization gauge.	6
Q-5	(a)	With neat diagram explain Float zone method.	6
	(b)	What is lithography? Explain Electron Beam Lithography. OR	6
	(b)	Describe all the steps for Photolithography process.	6
Q-6	(a)	With suitable diagram describe the working of Scanning Electron Microscope (SEM).	6
	(b)	List out and describe the types of milling machines. OR	6
	(b)	Give the detail note on working operation of CNC milling machine.	6

Good Luck