SEAT No.___

No of printed page: 3

SARDAR PATEL UNIVERSITY

M.Sc. (SEMESTER-I) EXAMINATION Tuesday, 23rd October, 2018 Time: 10:00 a.m. to 1:00 p.m. CHEMISTRY: PS01CCHE01 (INORGANIC CHEMISTRY-I)

Not	 The average kinetic energy of free particle is a) n²b²/8ML² (b) k²b²/8Mπ² (c) n²b²/8Mπ² When electrons are free in atoms and molecules they unde (a) Linear (b) Vibrational (c) Rotational Which of the following indicates non degenerate state? (a) E₁₁₂ (b) E₁₂₁ (c) E₂₂₂ Perturbation method is applied to the system if: (a) For the unperturb state E⁰ not known & Ψ⁰ known. (b) For the unperturb state E⁰ & W⁰ known. (c) For the unperturb state E⁰ known & Ψ⁰ not known. (d) For the unperturb state E⁰ & Ψ⁰ are not known. H- like atom are characterized by: (a) + Ze²/(4πE₀)r (b) - Ze²/(4πE₀)r (c) + ½ Ka² What is the nature of O₂ according to VBT? (a) Paramagnetic (b) Diamagnetic 			Total marks: 70				
.1.	Answer the follow	ing:	[8]					
	1. The average kinetic energy of free particle is							
	a) n ² h ² /8ML	(b) $k^2h^2/8M\pi^2$	(c) $n^2h^2/8M\pi^2$	(d) $k^2h^2/8ML^2$				
	2. When electrons are free in atoms and molecules they undergo motion?							
	(a) Linear	(b) Vibrational	(c) Rotational	(d) None of them				
	3. Which of the following indicates non degenerate state?							
	(a) E ₁₁₂	(b) E ₁₂₁	(c) E_{222}	(d) E ₂₂₁				
	4. Perturbation method is applied to the system if:							
•								
	• •							
	5. H- like atom are characterized by :							
	(a) $+ Ze^2/(4\pi)$	πE_0)r (b) - Ze ² /(4	πE_0)r (c) + ½ Ka ²	(d) - ½ Ka ²				
	6. What is the nature of O ₂ according to VBT?							
	(a) Paramag	,						
	(c) Both a & b (d) Antiferroma			etic				
	7. The energy required for dissociation by H ₂ +H ₂							
	(a) >	(b) < (c) ≥	≥ (d) ≤					
	8. The value of spin multiplicity for C ₂ + molecule is:							
	(a) 4	(b) 1	(c) 2	(d) 3				
				19.7				

2.	Attempt any	SEVEN	of the	following:
----	-------------	--------------	--------	------------

[14]

- 1. Write a note on Hamiltonian operator
- 2. Prove $[Ly, Lz] = i\hbar \hat{L}x$
- 3. Derive the nth order perturbation energy equation.
- 4. Determine L, S, J & term symbol arising out of coupling between an electron in p-orbital & another in d-orbital.
- 5. For a particle in a box, explain how the particle quantization of energy depends on the size of the box, size of the particle and wavelength of the light.
- 6. Determine the value of associated Laguerre polynomial for n=3 and l=2 system.
- 7. Derive the Hermite's polynomial for third degree.
- 8. Explain electro density and bonding in H_2 ⁺ ion on basic of MOT.
- 9. Show that component of angular momentum operator Lz does not commute with set down operator.
- $\ensuremath{\textbf{Q.3.A.}}$ Write a note on quantum mechanical tunneling and write its two uses.

[6]

[3]

[3]

B. Answer the following.

- (i) Explain square of angular momentum and its component (X, Y) Commute with each other.
- (ii) Explain: Normalization of wave function for a rotational motion of a particle in a ring

OR

- B. Butadiene contains 4π \bar{e} each of which moves freely from one end of the molecule to another end. Treat the molecule as one dimensional box whose length is equal to sum of all C-C bond length plus half the C-C bond length on either side. The average C-C bond length is 0.14 nm.
 - (i) Calculate the lowest absorption frequency (v) in cm $^{\text{-}1}$ & wave length (λ) in nm of light absorbed.
 - (ii) Calculate the total ground state energy. [Given: $h=6.626 \times 10^{-34} JS$, $1J=6.24 \times 10^{18}$ eV, and $1eV=8.06 \times 10^{3}$ cm⁻¹]

Q.4.A. Derive the radial function for large, small and intermediate value of ρ .	[6]					
Q. 4. B. Considering Hydroiodic (HI) acid as a rigid rotator rotating in	[6]					
 (i) XY plane (ii) Three dimensional space (1) Calculate the rotational energy for first five energy level. (2) What will be the frequency and wave length of light absorb when transition takes from ground state to first excited state. (Given: Radius (r)=1.6 Å, h=6.626x10-34 JS, C=3x108 m/sec) 	Į					
OR						
Q.4. B. Answer the following.						
1. Explain the total wave function for H-like atom.						
2. Using the function $Y = \rho^k$. $e^{-\rho}$ Derive the radial normalized wave function for one electron system.	[3]					
Q.5.A. Derive the radial equation $R = N\rho^l L_{(\rho)} e^{-\rho/2}$ for H-like atom	[6]					
Q.5.B. Explain time independent theory for non-degenerate system. Also find						
out first and second order perturbation energy equation.						
OR						
Q.5.B. Answer the following.	[6]					
(i) Discuss the commutation with Hamiltonian.						
(ii) Explain Hatree self consistent field method.						
Q.6.A. Explain: Born Oppenheimer approximation and derive the electronic and	[6]					
nuclear Schrodinger equation.						
Q.6.B. Derive the term symbol for the following.	[6]					
(i) He_2 (ii) N_2 ⁺ (iii) O_2						
OR						
Q.6.B. Derive the equation $E = 2 E_H + 1/R + (j-k) / 1 + S$ for hydrogen molecule on the	[6]					
basis of MOT. ————————						
3						