Total marks: 70

SARDAR PATEL UNIVERSITY

M.Sc. (SEMESTER-I) EXAMINATION

Friday, 21st Oct., 2016 10:00 A.M. to 01:00 P.M. CHEMISTRY: PS01CCHE01 (INORGANIC CHEMISTRY-I)

Note:-figures to the right indicate full marks:						Total marks: 70	
	swer the follow						[8]
1. N	ormalization wave	function for re	otational 1	notion of a pa	article in r	ing is	
(a) $1/\sqrt{2}\pi \exp(\pm im\Phi)$				(b) $1/\sqrt{4\pi} \exp(\pm im\Phi)$			
((c) $1/4\pi \exp (\pm im\Phi)$			(d) $1/2\pi \exp(\pm im\Phi)$			
2. T	he symbol corresp	onds to Laplaci	ian opera	tor is	:		
. ((a). ∇ ²	(b) ∇		(c) L	100	(d) L	
3. T	he solution of rac	dical equation	fpr sma	ll value of ρ	is		
		(b) $\frac{4}{R}$		(c) $\frac{2}{R}$	1	(d) $\frac{R}{2}$	
4. F	Perturbation meth	od is applied	to the sy	stem is			
	(a) $_{H}^{\wedge_{0}} >>>_{V}^{\wedge}$				•	(d) None of thes	е
5, 7	The value of assoc	iated languer	re polyno	mial for n=3	and l=2 sy	/stem is	
	(a) 120	(b) -120		(c) 6		(d) -6	
6. V	What will be the e form C-T bond?		ond stre	ngth, if H-ato	om in C-H	l bond is replace	by T to
.	(a) Bond strength	increase		(b) bond str	rength re	main same	
	(c) bond strength	decrease		(d) bond ca	annot for	m	
7 '	The term symbols	for Balmolec	ule is:				
	(a) $^3\Sigma_g$	(b) $^3\Pi_{\mathrm{u}}$		(c) $^2\Sigma_g$		(d) $^3\Sigma_{\mathrm{u}}$	
8.	(a) ${}^3\Sigma_g$ A system represe	nted by funct	ion $\Psi=$	$\sqrt{\frac{1}{8}}\dot{\Phi}_1 + \sqrt{\frac{7}{8}}\dot{\Phi}_1$, p ₂ the pr	obability of getti	ng the
	value of energy E						
	(a) $\frac{1}{8}$	(b) $\sqrt{\frac{7}{8}}$		(c) $\sqrt{\frac{1}{8}}$,	(d) $\frac{7}{8}$	
Que: 2 A	Attempt any SEV	EN of the foll	lowing:			÷	[14]
2		wave function rgy of the state energy der perturbation kinetic energy I is lower in en , momentum a dinger's equati	for hydro E ₁₂₁ by d on energy is equal ergy than and uncert on for pa	istortion alor r equation. to E, Ψ = sin large and single r og 2Pz for the stainty relation relation one of the single and	ng Y-axis a kx. e C₂ systen n. limension		
	•	-		<u> </u>	•	(p.1-0)·)
			(1)	•		

 Que: 3 (A) Butadiene contains 4n electron each of which moves freely from one end of the molecule to the other. Treat the molecule as a one dimensional box whose box length is equal to the length of carbon chain plus half C-C bond length on either other sides. The average C-C bond length is 0.14 nm. (i) Calculate the total ground state energy of the molecule. (ii) Calculate the lowest absorption frequency(in cm⁻¹) and wave length(in nn of light absorbed. (Given: h= 6.626x10⁻³⁴ JS, 1J = 6.24x10¹⁸ and 1eV = 8.06x10³ eV cm⁻¹) 	r
Que: 3 [B] Answer the following:	
 (I) Show that set-down operator does not commute with set-up operator but commute with square of angular momentum operator. (II) Discuss the translational motion of the particle in a cubical box. 	[3]
OR	
Que: 3 [B] Write a note on quantum mechanical tunneling and write its two applications.	[6]
 Que: 4[A] Assuming harmonic oscillator model for C-C, C=C, C≡C bond having frequency 1400, 1700 and 2100 cm⁻¹ respectively. (i) Calculate the bond strength. (force constant) (ii) Calculate the lowest vibration energy level. 	[6]
(iii)Calculate the energy gap between two levels.	
Que: 4 [B] Answer the following:	
 (I) Derive the Recursion formula for Hermite's differential equation for one dimensional harmonic oscillator. (II) Derive the associated languerre polynomial for n=3 and l=2. 	[3]
o r	
Que: 4 [B] Considering CO as a rigid rotator in a (I) XY-plane (II) three dimension. (I) Calculate the frequency and wave length of light emitted when transition takes place from exited stage to ground state, i.e. n=1 to n=0 (II) Calculate the angular momentum and first three rotational energy level. [Given: Radius=1 x 10 ⁻¹⁰ m, h= 6.626 x 10 ⁻³⁴ JS, C= 3 x 10 ⁸ m/sec]	[6]
Que:5 [A] Derive the normalized wave function. $\Psi_{(1.2.3n)} = 1/\sqrt{n!} \ \Phi_1(1), \Phi_1(2), \dots, \Phi_{n/2}(n) \ \text{for many electron systems.}$	[6]

Que: 5 [B] Answer the following:

- (I) Derive the time-independent perturbation theory for non degenerate state and calculate the first order perturbation energy equation. [3]
- (II) Explain: Hartree's self consistent field method.

[3]

OR

Que: 5 [B] Answer the following:

- (I) Using the function $Y = \rho^k$, $e^{-\rho}$ Derive the radial normalized wave function for one electron system. [3]
- (II) Calculate the total energy and ionization energy of the He atom in presence and absence of repulsion energy and compare with experimental value. [3]

[1 a.u.= 0.435×10^{-17} JS, and 1J= 6.24×10^{18} eV]

- Que: 6 [A] Derive the energy equation $H_{AA} = 2E_H + 1/R + J$ for hydrogen molecule on the basis of Heitler and London theory. [6]
 - [B] Answer the following:
 - (I) Discuss the adiabatic and crude Born Oppenheimer approximation.

[3]

(II) Explain LCAOMO treatment for diatomic molecule.

[3]

OR

Que: 6 [B] Answer the following:

- (I) Explain the electronic state and term symbols for diatomic molecule. Determine the term symbols for He₂+, O₂, F₂+. [3]
- (II) Discuss the angular momentum for many electron systems.

[3]

All the best

e de la companya de la co