SARDAR PATEL UNIVERSITY M.Sc. (SEMESTER-I) EXAMINATION 2019

Monday, 18th November

10.00 a.m. to 01.00 p.m. CHEMISTRY: PS01CCHE21

(Electron Spectroscopy and Magneto Chemistry)

Note:-figures to the right indicate full marks.

Total marks: 70

[8]

- Q.1. Answer the following: 1. The ground state value of J for ³F term derive from Co(III) is: a. One

 - b. Two
 - c. Zero
 - d. Four
 - 2. The term symbol for the microstate $(3^+, -1^+)$ is:
 - a. ³G
 - b. ^IG
 - c. ¹D
 - d. 3D
 - 3. The ground state for the $[Cr(CN)_6]^{3-}$ is:
 - a. ${}^4T_{2g}$
 - b. ⁴A_{2g}
 - c. ${}^{4}T_{1g}$
 - d. ⁴Eg
 - The possible transition in [Co(CN)₆]³⁻ is:

 - $\begin{array}{ll} a. & ^1E_g \rightarrow {}^1T_{2g} \\ b. & ^1A_{1g} \rightarrow {}^1T_{1g} \end{array}$
- 5. The number of Cu—O bonds in [Cu(CH₃COO)₂ H₂O]₂ is:
 - a. 10
 - b. 08
 - c. 02
 - d. 04
- 6. Which of the following complex ion has a magnetic moment value same as K₃[Fe(CN)₆]?
 - a. [Cu(NH₃)₄]²⁺
 - b. [Ni(DMG)₂]
 - c. [Fe(H₂O)₆]³⁺
 - d. [Fe(H₂O)₆]²⁺
- 7. Which of the following metal ion exhibits highest magnetic moments value?
 - a. Tm(III) z = 69
 - b. Am(III) z = 95
 - c. Cf(III) z = 98
 - d. Pm(III) z = 61

	b. Dy(III) c. Tm(III) d. Pr(III)	
Q.2.	Attempt any <u>SEVEN</u> of the following:	[14]
1.		[14]
2.	trigonal prismatic and pentagonal bipyramidal geometries?	
3.		
4.		
5. 6. 7.	Differentiate hidden and overt. Differentiate diamagnetism and anti-ferromagnetism. Explain the effect of pressure on magnetic moments.	
8.	Explain the spin pairing in [Ni(Cl) ₄] ²⁻ complex.	
9.		
Q.3.A.	Explain the spin pairing in [Pt(Cl) ₄] ²⁻ complex.	
Siniur.	Differentiate tetragonal elongation and tetragonal compression. Show that structure of $[Co(NH_3)_6]^{3+}$ is d^2sp^3 hybrid and $[Co(F)_6]^{3-}$ is sp^3d^2 hybrid on the basis of MOT.	[6]
B.	Answer the following:	[6]
	Calculate the number of microstate for the following configurations and arrange them in decreasing order of energy.	
2.	$(t_{2g})^3(e_g)^1$, $(e_g)^4(t_{2g})^3$, $(e_g)^2(t_{2g})^3$ and $(t_{2g})^5(e_g)^1$. Explain the Hund's rule for deriving term symbols. What do you mean by hole-equivalent?	
В.	OR Define spectrochemical series and Nephelauxetic series. (i) Arrange the following complexes in increasing order of crystal field splitting energy giving suitable reason. 1. [Ir(NH ₃) ₆] ³⁺ , 2. [Co(NH ₃) ₆] ²⁺ , 3. [Co(H ₂ O) ₆] ²⁺ , 4. [Mn(Br) ₆] ⁴⁻ , 5. [Ni (SCN) ₆] ⁴⁻ , 6. [Mn(Br) ₄] ²⁻ .	
	 (ii) Arrange the following complexes in increasing order of 15B value: (1). [Cr(H₂O)₆]²⁺ (2). [Cr(F)₆]⁴⁻ (3). [Cr(Br)₆]⁴⁻ (4). [Cr(NH₃)₆]²⁺ 	
Q.4.A.	Derive the configuration interaction term (x) for the $[Cr(H_2O)_6]^{3+}$ and $[Ni(Cl)_6]^{4-}$. Calculate crystal field splitting energy, nephelauxetic ratio, covalent character, ionic character and Racah parameter for the $[Mn(H_2O))_6]^{2+}$. Given: $v_1 = 18,600 \text{ cm}^{-1}$, $v_2 = 22900 \text{ cm}^{-1}$, $v_3 = 24900 \text{ v}_4 = 25150 \text{ and } B_0 \text{ for Mn(II)} = 860 \text{ cm}^{-1}$. From theoretical plot:	[6]
В.	Ratio $v_{3/}v_{2} \approx 1.1$ correspond E/B= 24 and E/B= 24 correspond to ${}^{4}T_{1g}$. Draw and explain the Orgel and TS-diagram for [Co(CN) ₆]·Cl ₃ complex.	[6]
•	$(\widehat{\mathbf{z}})$	

8. Which of the following lanthanides produce largest down-field shift?

a. Gd(III)

B. Differentiate forbidden and allowed transitions giving suitable examples. Calculate crystal field splitting energy, nephelauxetic ratio, covalent character, ionic character and Racah parameter for the [V(H₂O))₆]³⁺ and predict the types of transition v₁ and v₂.

Given: $v_1 = 17,200 \text{ cm}^{-1}$, $v_2 = 25600 \text{ cm}^{-1}$ and B_0 for V(III) = 860 cm⁻¹.

From theoretical plot:

E/B= 20 corresponds to Dq/B =2.5 for ${}^3T_{1g}(F)$ and E = 17,200 cm⁻¹

Dq/B =2.5 corresponds to E/B= 30 for ${}^{3}T_{1g}(P)$

Dq/B = 2.5 corresponds to E/B= 45 for ${}^{3}A_{2g}$.

- Q.5.A. Derive the equation for molar diamagnetic susceptibility and show that diamagnetism is negative and indirectly dependent on temperature.
 - B. Answer the following:
 1. Calculate the effective magnetic moment value of [Ni(en)₃]²⁺, [Co(H₂O)₆]·Cl₃ and [Ni(CO)₄].
 - 2. Find out the diamagnetic susceptibility correction for salicylaldeneglycine and 2-methyl aniline.

Given: $\chi_A \rightarrow C$ = - 6.0 x 10⁻⁶ cgs units, H = - 2.93x10⁻⁶ cgs units, O = - 4.61x10⁻⁶ cgs units, O_2 = - 7.95x10⁻⁶ cgs units, $N_{(Open\ chain)}$ = - 5.57 x 10⁻⁶ cgs units and

 $N_{\text{(ring)}} = -4.61 \times 10^{-6} \text{ cgs units.}$

 $\lambda \rightarrow C = -0.24 \times 10^{-6}$ cgs units and C=N = +8.15x10⁻⁶ cgs units.

<u>OR</u>

- B. Differentiate the ferromagnetism and ferrimagnetism. Discuss the spontaneous magnetism theory.
- Q.6.A. Explain the spin-orbit coupling and calculate the value of λ for high-spin d¹ to d¹⁰. What is the effect of spin-orbit coupling on effective magnetic moments value of $[Cr(H_2O)_6]^{3+}$? Given $\lambda = 315$ cm¹⁻ and Dq = 800 cm¹⁻.
 - **B.** Answer the following:

[6]

[6]

- 1. Explain the relative change in electron exchange energy.
- 2. Define the Lande's interval rule and calculate the energies of J-levels for f²-system.

<u>OR</u>

- B. Answer the following:
- Which of the orbital contribution condition are satisfy in the following complexes?
 (i). [Fe(SCN)₄]³⁻ (ii). [Co(NH₃)₆]·Cl₃, (iii). [Mn(CN)₆]⁴⁻.
- Derive the term symbols and magnetic moments of the following systems.
 (i). Pu(III) z = 94 (ii). Dy(III) z = 66 (iii). Yb(III) z = 70.

