SARDAR PATEL UNIVERSITY

M.Sc. (SEMESTER-I) EXAMINATION

Monday, 18th November, 2019

Time: 10:00 a.m. to 01:00 p.m.

CHEMISTRY: PS01CCHE01 (INORGANIC CHEMISTRY- I)

	Note: -Figures to t	Total marks: 70		
	Q.1.Answer the following:			[8]
1.	Theis z	ero-point energy	for harmonic oscillator.	
	a) 1/2 hν	b) 3/2 hν	c) hv	d) 5/2 hv
2.		r has not zero va		
	а) (d,d/dx)Ψ	b) (x,d/dy	c) $(d/dx,d^2/dx^2)$) Ψ d) (d/dy,x)Ψ
3.	The solution of radical equation for small value of ρ is			
	a) $\frac{R}{2}$	b) 4/2	c) ρ^l	d) $\frac{R}{4}$
4	Perturbation m	ethod is applied	to the system is	4
	a) None of thes	e b) $\hat{V} >>> \hat{H}$	$0 c) \hat{H}^0 = \hat{V}$	d) $\hat{\mathrm{H}}^0>>>\hat{V}$
5.	The value of associated Laguerre polynomial for n=3 and l=2 system is			=2 system is
	a) 120	b) -120	c) 6	d) -6
6.	At the equilibri	ım point (x=0) o	foscillation all the energy o	corresponds to
	(a) Rotational E	nergy	(b) Kinetic Energy	
	(c) Potential en	ergy	(d) Electronic Energy	
7.	The term symbo	ols for B2 molecu	le is:	
	(a) $^2\Sigma_g$	~ 2	(c) $^3\Sigma_{\rm g}$	(d) $^3\Sigma_{\mathrm{u}}$
8.	The operator corr	esponds to total	energy of the system is	
	(a) P	(b)	(c) Ĥ	 (d) ALL
	Q.2 Attempt any SE 1. Write a note on F	lamiltonian oper	ator.	[14]
4	2 Calculate the ene	ergy of state E ₁₂₁	by distortion along Y-axis	and show the effect of
-	distortion on ene			
/	. Explain the comm	nutative propert	y giving suitable examples.	
	Derive first order	perturbation en	ergy equation.	
6	5. Derive the Laguer	kinetic energy ic	or $n=3 \otimes i=1$ s equal to E, $\Psi = \sin kx$.	
7	. What is Dirac not	ation?	equal to E, $\Psi = \sin kx$.	
8				
9			nd the term symbol arisin	~ ~ ~ f ()
	between an elect	ron in s – orbital	and an electron in p – orbi	tal.
Q.3.	A. Write a note qua	ntum mechanica	l tunneling and write its tw	vo applications. [06]
Q.3.	B. Answer the follo	owing:	,	TO/1
		_	c and asymmetric wave fu	[06]
	eigenvalue for a	particle in a box	Find out the values of nor	malized wave
••	function at $X = 0$ function.	\pm L/2 and \pm L,	/4 for first symmetric and a	asymmetric wave
	2. Show that [Lx, Ly	$r] \neq 0$.	,	N am ak
			(1)	(L10)

- **B.** Butadiene contain $4\pi e$, each of which moves freely from one end of the molecules to the other. Treat the molecules as a one dimensional box whose length is equal to the length of C-C bond plus half of the C-C bond length on either side. The average C-C bond length is 0.14 nm.
 - (i) Calculate the total ground state energy of the molecule.
 - (ii) Calculate lowest absorption frequency (in cm⁻¹) and wavelength (in nm) of light absorbed.

(Given: $h=6.26 \times 10^{-34} \text{ Js}$, 1 $J=6.24 \times 10^{18} \text{ eV}$ and $l \text{ eV} = 8.06 \times 10^{3} \text{ cm}^{-1}$)

Q.4.A. Answer the following:

[06]

- 1. Derive the third degree of Hermit's polynomial.
- 2. Explain rotation of a diatomic molecule in a plane.
- B. Assuming harmonic oscillator model for C-C,C=C and C≡C with frequency. [06] 1450cm⁻¹, 1750cm⁻¹, 2100cm⁻¹ respectively. Calculate bond strength, lowest vibrational energy and energy gap between two levels.

OR

B. Answer the following:

[06]

- 1. Derive the normalization factor of the wave function for a one dimensional.
- **2.** Derive the radial function for large & small value of ρ .
- **Q.5.A.** Derive the time independent perturbation theory for non-degenerate state and calculate first order perturbation energy equations. [06]
 - B. Discuss the wave function for the many electron systems.

[06]

OR

B. Answer the following:

[06]

- 1. Explain the commutation with the Hamiltonian.
- 2. Explain: Hartree's self-consistent field method.
- Q.6.A. Derive the energy equation $H_{AA} = 2E_H + \frac{1}{R} + J$ for Hydrogen molecule on the basis of Heitler & London theory . [06]

B. Answer the following:

106

1. Discuss the Born-Oppenheimer approximation for the solution of Schrodinger equation.

OR

B. Answer the following:

[06]

- **1.** Determine the term Symbols for He_{2}^{+} , O_{2} , F_{2}^{+} .
- Explain LCAOMO treatment for diatomic molecule.

