SARDAR PATEL UNIVERSITY

M.Sc. (SEMESTER-I) EXAMINATION Tuesday, 19th March, 2019 Time: 10:00 a.m. to 01:00 p.m. CHEMISTRY: PS01CCHE01 (Inorganic Chemistry-I)

Time: - 3 hours

Marks:- 70

	1. Answer the following.				
1	. At the equilibrium point (x=0) of oscillation all the energy corresponds to				
	(a) Potential energy	(b) Rotational Energy(d) Electronic Energy			
2	. Theis zero-point end				
	(a) 1/2 hv (b) 3/2 hv	(c) hv	(d) 5/2	! hv	
3.	is the number of to				
	(a) $2S + 1$ (b) $2L + 1$	(c) $2(L+1)$	(d) $2(S+1)$		
4.					
	(a) $n^2h^2/8ML^2$ (b) k^2	$n^2/8M\pi^2$	(c) $n^2h^2/8M\pi^2$	(d) $k^2h^2/8ML^2$	
5.	Perturbation method is appl	_		-	
	(a) For the unperturb state I	E ⁰ not known &	Ψ^0 known.		
	(b) For the unperturb state I	E^0 & & Ψ^0 know	vn.		
	(c) For the unperturb state I	E ⁰ known & Ψ ⁰	not known.		
	(d) For the unperturb state $E^0 \& \Psi^0$ are not known.				
6.	is the value of associ	iated Laguerre p	olynomials for 1	s orbital.	
	(a) 6 (b) 1		(c) -6	(d) -1	
7.	The energy required for dissoc	ation by ${ m H_2}^+$	H ₂		
	(a) > (b) <		(c) ≥	(d) ≤	
8.	The value of spin multiplicity i	for C_2^+ molecule	is:		
	(a) 4 (b) 1		(c) 2	(d) 3	
e. 2.	Answer the following. [Any	seven]			[14]
(1) Define the term: (i) Zero p	oint energy	(ii) Constant	of motion	
(2) Explain the commutative pro	perty giving suita	able examples.		
(3) Write a note on Hamiltonian	operator.			
(4) Explain the total wave functi	on for hydrogen	like atom.		
(5) Determine the value of ass	ociated Lagueri	re polynomial f	or n=3 and l=0 system.	
(6) Give the condition for pert	urbation treatm	ent,		
(7) Define the term: Dirac not	ation and Pertui	bation.		
(8) Explain the σ and π -molecul	ar orbitals.			
((9) Explain the bonding in LiF	I molecule.			0.0 1
					$P \pi_0$

	ra		
Que. 3. [A] Butadiene contains $4\pi \bar{e}$ each of which moves freely from one end of the molecule			
another end. Treat the molecule as one dimensional box whose length is equal to su			
of all C— C bond length plus half the C-C bond length on either side. The average			
C— C bond length is 0.14 nm.			
(i) Calculate the lowest absorption frequency (v) in cm ⁻¹ & wave length (λ) in nm of	of		
light absorbed.			
(ii) Calculate the total ground state energy.			
(Given: h=6.26 x 10^{-34} Js, $1J = 6.24 \times 10^{18}$ eV and $1 \text{ eV} = 8.06 \times 10^3 \text{ cm}^{-1}$)			
[B] Write a note on quantum mechanical tunneling and write its two applications.	[6]		
OR			
[B] Answer the following.	[6]		
1. Explain square of angular momentum and its component (X,Y) Commute with			
each other.			
2. Discuss the translational motion of a cubical box.			
Que. 4. [A] Derive Hermit's differential equation and Recursion formula.			
[B] Assuming harmonic oscillator model for C-C, C=C and C≡C with frequency	[6]		
1400cm ⁻¹ , 1700cm ⁻¹ and 2100cm ⁻¹ respectively. Calculate bond strength, lowest			
vibrational energy and energy gap between two levels.			
OR			
[B] Derive the radical function for small, large and intermediate value of $ ho$.	[6]		
Que. 5. [A] Derive the time - independent perturbation theory for non degenerate state and	[6]		
calculate the second order perturbation energy equation.			
[B] Explain the spin-orbit interaction. Derive the term symbols arising out of coupling	[6]		
between an electron in d-orbital and f-orbital.			
OR			
[B] (i) Explain the commutation with Hamiltonian	[3]		
(ii) Explain variation method.	[3]		
Que. 6. [A] Explain the LCAO-MO treatment of diatomic molecule and differentiate the π -MO's and σ -MO's.	[6]		
[B] Discuss the Born- Oppenheimer approximation for the solution of Schrodinger	[6]		
equation.			
OR			
[B] Derive the energy equation $H_{AA} = 2E_H + 1/R$ - J for hydrogen molecule on the	[6]		
basis of Heitler-London theory.			