Total marks: 70

No. Of Printed Pages: 2

[46 & A-39]

Note:-figures to the right indicate full marks:

SARDAR PATEL UNIVERSITY

M.Sc. (SEMESTER-I) EXAMINATION

Monday, 4th April, 2016 10:30 A.M. to 01:30 P.M. CHEMISTRY: PS01CCHE01 (INORGANIC CHEMISTRY-I)

Que: 1 A	nswer the follow	ing:		[8]		
1.	When electrons are	free in atoms and mole	cules they undergo	motion?		
	(a) linear	(b) Vibrational	(c) Rotational	(d) None of them		
2.		hrodinger equation is p	-	-		
		(b) One electron		(d) None of them		
3.	Which of the follo	wing indicates no deg	generate states?			
	(a) E_{112}	(b) E_{212}	(c) E_{222}	(d) E_{221}		
 Born Openheimer approximation is very reliable forelectronic state. 						
	(a) Excited	(b) Both a & b		• •		
5.	An angel own as b	etween rotational axi	s and Z-axis known a	IS		
	(a) θ angle	(b) Rotational angle	(c) Zenith angle	(d) Azimuthal angel		
6.	The term symbol i	for $n=3$, $l=2$ and $s=1$ s	ystem is			
	(a) ¹ D ₄ , ¹ D ₃ , ¹ D ₂	(b) ${}^{3}D_{3}$, ${}^{3}D_{2}$, ${}^{3}D_{1}$	(c) ${}^{3}P_{3}$, ${}^{3}P_{2}$, ${}^{3}P_{1}$	(d) ${}^{3}D_{2}$, ${}^{3}D_{1}$, ${}^{3}D_{0}$		
7.	The term symbols	for B ₂ molecule is:				
	(a) $^3\Sigma_g$	(b) ³ ∏ _u	(c) $^{2}\Sigma_{g}$	(d) $^3\Sigma_{\rm u}$		
8.	H like systems is o	characterized by				
	(a) + Ze ² /($4\pi\epsilon_0$)r	(b) - ½ Ka ²	(c) + $\frac{1}{2}$ Ka ²	(d) - $\mathrm{Ze^2}/(4\pi\varepsilon_0)$ r		
Que: 2 A	Attempt any SEVE	EN of the following:		[14]		
1.	Derive the Schröd	inger's equation for par	ticle in one dimension	al harmonic oscillator.		
2.	. Derive second order perturbation energy equation.					
3.	3. Determine L, S, J & term symbol arising out of coupling between an electrons in					
	S-orbital and another in P-orbital.					
4.	 Determine the value of associated Laguerre polynomial for n=2 and l=1 system. 					
	5. Show that: $\hat{P}x = \pm h/2\pi i \cdot d/dx$					
	6. Explain the ionic contribution for hydrogen molecule on the basis of VBT.					
	7. Write a note on Hamiltonian operator.					
	3. Explain the symmetric and asymmetric wave function.					
	9. Derive n th order perturbation energy equation.					
_				from one end of the [6]		
		other. Treat the mole	· ·			
	length is equal to the length of carbon chain plus half C-C bond length on either					
	other sides. The average C-C bond length is 0.14x10 ⁻⁷ cm ⁻¹ .					
	(i) Calculate the total ground state energy of the molecule.					
	(ii) Calculate t	he lowest absorption	frequency(in cm-1) a	nd wave length(in nm)		
	of light ab	sorbed.				

(Given : $h = 6.626 \times 10^{-34}$ JS, $1J = 6.24 \times 10^{18}$ eV and $1 \text{ eV} = 8.06 \times 10^{3}$ cm⁻¹)

Que: 3 [B] Answer the following:	
(I) Show that $[Lx, Ly] \neq 0$.	roı
(II) Explain the commutation with Hamiltonian.	[3]
	[3]
OR	
Que: 3 [B] Write a note on quantum mechanical tunneling and write its two applications.	[6]
Que: 4[A] Derive Hermite's differential equation and Recursion formula.	[6]
[B] Assuming harmonic oscillator model for C-C, C=C, C≡C bond having	[6]
frequency 1400, 1700 and 2100 cm ⁻¹ respectively.	
(i) Calculate the bond strength. (force constant)	
(ii) Calculate the lowest vibration energy level.	
(iii)Calculate the energy gap between two levels.	
OR	
Que: 4 [B] Answer the following:	
I) Explain the rotational motion of a particle on sphere	[3]
II) Derive the associated Languerre polynomials for 3d orbital.	[3]
Que:5 [A] Derive the overall wave function for many electron system.	[6]
[B] Answer the following:	
I) Explain the principle of variation method and derive the equation	[3]
$E = a_1^2 E_{1+} a_2^2 E_2.$	_, _
II) Calculate the total energy and ionization energy of the He atom in	[3]
presence and absence of repulsion energy and compare with	. ,
experimental value. [1a.u.= 0.435×10^{-17} js and 1 joule= 6.24×10^{18} ev.]	
OR	
[B] Write the three conditions for perturbation theory. Explain the first order correction to wave function and second order correction to energy of the eigen function.	[6]
Que: 6 [A] Derive the energy equation $H_{AA} = 2E_H + 1/R + J$ for hydrogen molecule on	[6]
the basis of Heitler and London theory.	
[B] (I) Discuss the adiabatic and crude Born Oppenheimer approximation.	[3]
(II) Explain LCAOMO treatment for diatomic molecule.	
OR	
[B] Evaluate the energy equation E= $2E_H + 1/R + J - 2\frac{(J+K)}{1+S}$ for hydrogen	[6]
molecule on the basis of MOT.	