No. Printed pages: 3

C21) SARDAR PATEL UNIVERSITY M.Sc. (SEMESTER-1) EXAMINATION 2015

Saturday, 18th April 10:30a.m. to 1:30p.m.

CHEMISTRY:- PS01CCHE01 (INORGANIC CHEMISTRY-1)

Note:- Figures to the right indicates full marks.

Total marks:-70

Q-1	Answer the f	ollowing:				
1.	Which of the following is the correct relation between Cartesian and Polar coordinates?					
	(a) $x=r \sin\Phi \cos\Phi$; $y=r \sin\Phi \sin\theta$; $z=r \cos\theta$					
	(b) $x=r \sin\theta \cos\Phi$; $y=r \sin\Phi \sin\theta$; $z=r \sin\Phi$					
	(c) $x=r \sin \Phi \cos \theta$; $y=r \sin \Phi \sin \theta$; $z=r \sin \theta$					
	(d) $x=r \sin\theta \cos\Phi$; $y=r \sin\theta \sin\Phi$; $z=r \cos\theta$					
2.	The free electrons in an atoms & molecules can execute Motion.					
	(a) Rotational	(b) Vibration	al (c) Line	ear (d) None		
3.	In H ₂ ⁺ ion the bond distance and bond dissociation energy is &					
	respectively.	cond distance	and bond dissoo	action energy is &		
		97 eV	(b) 1.79A ⁰ , 2.00	5 eV		
			(d) $1.06A^0$, 2.8			
4.	Which of the following indicates non degenerate states?					
		•	(c) E_{221}			
5.	The Commuta	ator [Lz, L+] is	equal to			
	(a) ħL ₊	(b) ħL.	(c) -ħL+	(d) - ħL.		
6.	Born Open heimer approximation is very reliable for electronic state.					
	(a)Ground	(b) Excited	(c) Both a & b	(d) None		
7.	An angel between rotational axis and Z-axis known as					
	(a) Azimuthal angel		(b) Rotation an	gle		
	(c) Zenith angel		(d) θ angle			
8.	In vibrational motion of particle, as n increases the energy gap also					
	(a) Increase	(b) Decrease	(c) constant	(d) none of these		

	Attempt any SEVEN				
1.	Find out 3 rd degree of polynomial.				
2.	Show that $Py = -h/2\pi i d/dy$				
3.	S.T the average kinetic energy is equal to E.				
4.	Calculate the energy of state E_{211} by distortion along X-axis and show the effect of distortion on energy.				
5.	Write a note on Hamiltonian operator.				
6. 7.	Determine L, S, J & term symbol arising out of coupling between an electrons in S-orbital & another in P-orbital. Determine the value of associated laguerre polynomial for n=3 & l=2.				
8.	S.T component of angular momentum operator Lx does not commute with set				
	down operator.				
9.	Find out the normalization factor for the rotational motion of a particle.				
Q-3(A)	Butadiene contains 4π electrons, each of which moves freely from one end of the molecule to the other. Treat the molecule as a one dimensional box whose box length is equal to the length of C-C bond plus half the C-C bond length on either side. The average C-C bond length is 0.14nm. (i) Calculate the total ground state energy of the molecule.(ii) Calculate the lowest absorption frequency(in cm ⁻¹) and wave length(in nm) of light absorbed. (Given: h= 6.626×10^{-34} JS, $1J = 6.24 \times 10^{18}$ eV and $1eV = 8.06 \times 10^{3}$ cm ⁻¹)	[06]			
Q-3(B)	Explain Quantum mechanical tunneling.	[06]			
	OR				
Q-3(B)	Answer the following:				
Q-3(B) 1.	Explain square of angular momentum and its component (X, Y) Commute with each other.	[03]			
	Explain square of angular momentum and its component (X, Y) Commute with	[03] [03]			
1.	Explain square of angular momentum and its component (X, Y) Commute with each other.	•			

Q-4(B)	Answer the following:		
1.	Explain Rotational motion of diatomic molecules can occur in a plane (Fixed axis)	[03	
2.	Derive radial eigen function for n=1 and l=0 system.	[03	
Q-5(A)	A) Explain time independent perturbation theory for non-degenerate system. Also find out first and second order perturbation energy equations.		
Q-5(B)	Derive Overall wave function for many electron systems.	[06]	
	OR		
Q-5(B)	Answer the following:		
1.	State the principle of variation method and derive, $E = a_1^2 E_{1+} a_2^2 E_2$.		
2.	Calculate the total energy and ionization energy of the He atom in presence and absence of repulsion energy and compare with experimental value.[1a.u=0.435×10-17 js and 1 joule=6.24 ×1018 ev.]		
Q-6(A)	Derive the energy equation $H_{AA} = 2E_H + 1/R + J$ for hydrogen molecule on the basis of Heitler- London theory.		
Q-6(B)	M. O. Theory of bonding in H ₂ Molecules.	[06]	
	OR	£1	
Q-6(B)	Answer the following:		
1.	Discuss the LCAOMO treatment of diatomic molecules.	[03]	
2.	Explain bonding in HeH on the basis of VB treatment.	[03]	