SARDAR PATEL UNIVERSITY

M. Sc. THIRD SEMESTER BIOTECHNOLOGY EXAMINATION TUESDAY, DATE: 04–12–2012

PS03CBIT03 ENZYMOLOGY

TIME: 2:30 to 5:30 pm

MAX. MARKS: 70

Q-1 Select (tick'v") the correct answer from the following

[08]

- 1. The term Kcat/Km is
 - a. Efficiency constant
 - b. Proficiency constant
 - c. Specificity constant
 - d. All of the above
- In a substrate saturation curve in presence of a reversible enzyme inhibitor, if the x and y intercepts change, but the slope remains constant with the increase in inhibitor constant in LB plot, the type of inhibition is
 - a. Competitive
 - b. Non competitive
 - c. Uncompetitive
 - d. Mixed
- 3. Which of the following is false for MM kinetics?
 - A. Km = ½ Vmax
 - B. V₀≈ K₂ [E₀]
 - C. V_{mix} = K₂ [ES]
 - D. Km = [E] [S]/[ES]
 - a. Only A is false
 - b. B and C are false
- c. A B C are false
 - d. All are true
 - 4. EC 1.1.1.1 represents
 - a. Alcohol dehydrogenase
 - b. Invertase
 - c. Chymotrypsin
 - d. Lysozyme
- 5. Chymotrypsin is an example of
 - a. Electrostatic catalysis
 - b. Covalent catalysis
 - c. Sigmoidal kinetics
 - d. None
- 6. Fold purification is
 - a. Test of homogeneity
 - b. Number of times the enzyme concentration increases
 - c. Number of times the unit activity increases
 - d. Number of times specific activity increases

6										
7.	Pro	tein engineering is predete	rmine	d altera	tions	in prot	tein by			
	a. Addition or deletion of one amino acid								1	
	b. Addition or deletion of more than one amino acids									
	c. Deletion of protein domain									
		All of the above								
8.	Ribo	ozymes are								
	a.	Isozymes								
	b. Oligomeric proteins									
	C.	RNA catalysts								
	d.	Catalytic antibodies								
Q-2 At	temp	t: (Any Seven)							[14]	
	a. Define turnover number								28 3 18 V	
	b. Explain principle of affinity chromatography									
	c. what is bird-bond mechanisms									
	d. What is covalent catalysis?									
	e. Write the Michaelis Menton assumption.									
	f. Draw Cornish-Bowden Eisenthal plot									
	g. Draw Arrhenius plot								- 12	
		Describe the hemoglobin st								
	1. 1	Write the Adair equation fo	er a te	trameri	c enzy	me.				
Q. 3	a) Derive an equation for Mixed Inhibition							(06)		
	b) Explain with the help of equation, the Dixon plot for Competitive inhibition							(06)		
	OR									
	b) Explain how we differentiate between binary and ternary complex mecha									
	two:	substrate reaction							(06)	
Q. 4	a) Explain with suitable examples how we study enzyme mechanisms.							(06)		
	b) Explain the active site structure of chymotrypsin							(06)		
	DR b) Explain the oligomeric structure of ATCase							(06)		
2. 5	a) Write a note on: MWC and KNF models							(OC)		
4. 5	ay write a note on, wrive and the models							(06)		
	b) "Allosteric enzymes follow sigmoidal kinetics", explain giving example							nole	(06)	
- 1	OR CASH							100/		
	b) "ATCase follows MWC model", justify							(06)		
			a ez nu	versión.					********	
2.6	a) An	alvze the given substrate	satura	tion da	ta for	Invert	ase reaction	n hy suitah	le plot to	
	Analyze the given substrate saturation data for Invertase reaction by suita							n by solicate	ne piot to	
	deter	mine Km, Vmax and Kcat.		-						
		[S] mmol/ L	5.0	6.67	10	20	40			
		Velocity µmoles/L/min	147	182	233	323	400			
			083375			A control of	4		rocs	
	Given: [E] = 0.05 mg/ml, Mol wt 55 kd.								(06)	
	b) Explain Protein engineering giving suitable ex - 1p:35								(06)	
	OR							1001		
	b) "Hemoglobin is an excellent Oxygen carrier", Justify							(06)		
	of H	emographicis an excellent C	yyyge	of Hemogrobin is an excellent Oxygen carrier", Justify						