| 8        | EAT No.                                                     | No. of Printed Pages : 2                                                                                        |
|----------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 2182     | 3/84/947 M. Sc. THIRI                                       | O SEMESTER                                                                                                      |
| -        |                                                             | GY/BIOCHEMISTRY EXAMINATION                                                                                     |
|          | MONDAY DAT                                                  | E: 04-01-2021 (2011)                                                                                            |
|          |                                                             | C23 ENZYMOLOGY                                                                                                  |
|          |                                                             | CO3 ENZYMOLOGY                                                                                                  |
| TIME:    | 2:00 to 4:00 pm                                             | MAX. MARKS: 70                                                                                                  |
|          |                                                             | (08)                                                                                                            |
| Q. 1 (A) | ) Choose the correct answer                                 | - (08)                                                                                                          |
| 1.       | The active site of chymotrypsin consis amino acid residues? | ts of a catalytic triad of which of the following                                                               |
|          | a. Serine, histidine and aspartate                          |                                                                                                                 |
|          | b. Threonine, histidine and aspartate                       |                                                                                                                 |
|          | c. Methionine, histidine and aspartate                      |                                                                                                                 |
|          | d. Serine, histidine and glutamate                          | •                                                                                                               |
| 2.       | Which of these techniques is used to ch                     | neck homogeneity of proteins                                                                                    |
|          | a) IEF                                                      | b) SDS PAGE                                                                                                     |
|          | c) N terminal analysis                                      | d) all                                                                                                          |
| 3        | In MM kinetics when velocity is 1/2Vi                       | max the substrate concentration is equal to Km.                                                                 |
| J.       | What will be the substrate concentration                    | on at Vmax ?                                                                                                    |
|          | a) ½ Km                                                     | b) 2 Km                                                                                                         |
|          | c) zero                                                     | d) infinite                                                                                                     |
| 4.       | Glucokinase catalyses the transfer of                       | phosphate from ATP to glucose and to no other                                                                   |
|          | sugar is called                                             |                                                                                                                 |
|          | a) Group Specificity                                        | b) bond specificity                                                                                             |
|          | c) Absolute specificity                                     | d) stereospificity                                                                                              |
|          | When the Vinay and slone change but                         | the Km remains unchanged in presence of a                                                                       |
| Э.       | reversible inhibitor, the type of inhibit                   | ion is                                                                                                          |
|          | a) competitive                                              | b) noncompetitive                                                                                               |
|          | c) uncompetitive                                            | d) mixed                                                                                                        |
| 6        | The purity of an enzyme at various sta                      | ges of purification is best measured by:                                                                        |
| 0.       | a Total protein                                             |                                                                                                                 |
|          | b. Total enzyme activity                                    | mana kati salah |
|          | c. Specific activity of the enzym                           | ie                                                                                                              |
|          | d Descent recovery of protein                               |                                                                                                                 |
| 7        | . For a single substrate enzyme catalys                     | ed reaction, if $[S_0] = 0.5$ Km then What will be th                                                           |
|          | value of $V_0$ ?                                            | b) ½ Vmax                                                                                                       |
|          | a) Vmax                                                     |                                                                                                                 |
|          | c) 1/3 Vmax                                                 | (A) 2/3 Vmax                                                                                                    |
| 8        | 3. Under the effect of increasing temper                    | rature the rate of enzyme reaction                                                                              |
|          | a) only increases                                           | b) increases then decreases                                                                                     |
|          |                                                             | d) increases than remains constant                                                                              |

d) increases than remains constant

c) only decreases

| Q 1 (B) Do as Directed: (one mark each)                                                                                       | [16]                                                                                  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| 1. In Chymotrypsin, Serine-195 acts as a nucleophile (T/F)                                                                    | - •                                                                                   |  |  |
| 2. Enzyme-catalysed reactions do not involve a transition state. (T/F)                                                        |                                                                                       |  |  |
| 3. The LB plot for an irreversible inhibition looks like noncompetitive inhib                                                 | The LB plot for an irreversible inhibition looks like noncompetitive inhibition (T/F) |  |  |
| 4. Enzyme increases the rate of reaction by lowering the activation energ                                                     | Enzyme increases the rate of reaction by lowering the activation energy (T/F)         |  |  |
| 5. Dixon plot is an example of Secondary plot (T/F)                                                                           | , , , ,                                                                               |  |  |
| 6. If Enzyme A having lower Km value than Enzyme B, then which enzyme                                                         | exhibits higher                                                                       |  |  |
| affinity for substrate:                                                                                                       |                                                                                       |  |  |
| 7. In the inactive T state of Aspartate transcarbomylase,                                                                     | inds to enzyme a                                                                      |  |  |
| allosteric modulator.                                                                                                         |                                                                                       |  |  |
| 8. ATCase operates through model                                                                                              |                                                                                       |  |  |
| Enzyme efficiency is expressed by value                                                                                       |                                                                                       |  |  |
| 10. Which plots are used to determine Ki?                                                                                     |                                                                                       |  |  |
| 11. Carboxypeptidase A follows which type of enzyme binding mechanism?                                                        | •                                                                                     |  |  |
| 12. Draw Hill's plot                                                                                                          |                                                                                       |  |  |
| 13. Write Alberty's equation for ternary complex mechanism                                                                    |                                                                                       |  |  |
| 14. Two substrates reactions involving binary complex is also called as                                                       | machanien                                                                             |  |  |
| 15. Give one example of enzyme mechanism involving covalent catalysis.                                                        | mechanism                                                                             |  |  |
| 16. The ES complex is a (transition state/intermediate)                                                                       | *                                                                                     |  |  |
| (transition state/littermediate)                                                                                              |                                                                                       |  |  |
| Q-2 Attempt: (Any Seven)                                                                                                      | [14]                                                                                  |  |  |
| a. Make a labelled sketch of ATCase enzyme                                                                                    | [47]                                                                                  |  |  |
| b. Explain the terms Kcat and Km                                                                                              |                                                                                       |  |  |
| c. Draw a labelled Arrhenius plot.                                                                                            |                                                                                       |  |  |
| d. Define Unit activity and specific activity                                                                                 |                                                                                       |  |  |
| e. Define Ribozyme and enlist its types.                                                                                      |                                                                                       |  |  |
| f. What are abzyme?                                                                                                           |                                                                                       |  |  |
| <ul><li>g. Draw a labelled LB plot</li><li>h. How ordered sequential is differ from random sequential bisubstrate r</li></ul> | enation?                                                                              |  |  |
| <ul> <li>i. Draw a flow chart of enzyme purification strategy.</li> </ul>                                                     | eaction?                                                                              |  |  |
| n oran a non chart of cheyme parmeation strategy.                                                                             |                                                                                       |  |  |
| Q. 3 List the techniques used in enzyme purification and explain any two in deta                                              | il <b>(08)</b>                                                                        |  |  |
| Q. 3 Enlist various factors affecting enzyme activity and describe any three in de                                            | etail. (08)                                                                           |  |  |
|                                                                                                                               |                                                                                       |  |  |
| Q. 4 Explain noncompetitive inhibition with the help of various plots and equati<br>OR                                        | ons (08)                                                                              |  |  |
| Q. 4 Discuss the binary and tertiary complex mechanisms of two substrate rea                                                  | ction and explair                                                                     |  |  |
| how we differentiate them experimentally?                                                                                     | (08)                                                                                  |  |  |
|                                                                                                                               |                                                                                       |  |  |
| Q. 5 Explain the mechanism of lysozyme action                                                                                 | (08)                                                                                  |  |  |
| OR OR Discuss the mechanism of chumetrusin action                                                                             | (00)                                                                                  |  |  |
| Q. 5 Discuss the mechanism of chymotrypsin action                                                                             | (08)                                                                                  |  |  |
| Q. 6 What are isoenzymes? Explain their physiological significance                                                            | (08)                                                                                  |  |  |
| OR                                                                                                                            | 1/                                                                                    |  |  |
| Q. 6 Write a note on: Enzyme engineering                                                                                      | (08)                                                                                  |  |  |
|                                                                                                                               |                                                                                       |  |  |