of pages:3

SARDAR PATEL UNIVERSITY

M.Sc. (BIOINFORMATICS)

SEMESTER - III External Examination PS03CMBI02: Computational Structural Biology Wednesday, 5th December 2012

Time: 2:30p.m. to 05:30 p.m.

Max Marks: 70

[8]

Q1.	Choose the most appropriate option for each	question.	
a.	is induced electrical interacti conformational stability in the interior of the A) Hydrophilic interactions	ons which contribute significantly to protein. B) Covalent interactions	
	C) Van der Waals interactions	D) Hydrophobic interactions	
	E) None of above.		
b.	DALI and the results are organized into the database.		
	A) SCOP	B) SARF	
	C) FSSP	D) MMDB	
	E) None of Above		
c.	phi (φ) bond corresponds to the bond between A) Alpha carbon & amide nitrogen	i. B) Alpha carbon & alpha carbon	
	C) Carbonyl carbon & amide nitrogen	D) Alpha carbon & carbonyl carbon	
	E) None of above.		
d.	may or may not be an indicator of an evolutionary relationship.		
	A) Sequence similarity	B) Genome similarity	
	C) Structural similarity	D) All of Above	
	E) None of Above		
e.	are structural analogs that bind to a receptor and mimic the effects of its		
	natural ligand.		
	A) Agonists	B) Antagonists	
	C) Pharmacophore	D) Hit molecule	
	F) None of Above		

f.	The leucine zipper motif is typically made to by interactions between hydrophobic leuci	ap of two antiparallel α helices held toget ne residues located at every pos	her on
	in each helix: A) 8 th	B) 5th	
	C) 6th	D) 7 th	
	E) None of Above		•
g.	Gaussian nodal function used in NN is: A) Bell-shaped	B) SShaped	
	C) V shaped	D) N Shaped	
	E) None of Above		235
h.	In a sequence alignment, the presence of may be an indication of a A) Loop	more substitutions, insertions, and deleti B) helix	ions
	C) Sheet	D) All of Above	
	E) None of Above	D) I III of 1100 to	000
	744.V		eff.
Q2.			
a. b.	List and discuss any three classes of protein based on the types and arrangements of secondary elements. Explain various types of single and double stranded regions in RNA secondary		
	structures.		
c.	Explain file structure of Brookhaven Protein Data Bank with example.		
d. e.	Which are the major secondary structures in protein? List types of possible helix in protein and discuss structure of π -helix in detail. Explain Lipinski Rule of Five to evaluate druglikeness.		
f.	Write short note on CASP.		
g.	Describe structural 3-D profile table method for detecting matches of a sequence to a structural profile.		
h.	Describe chameleon sequence in protein structure analysis.		
i.	Explain Ramp Node function and its uses.		
Q3.	Answer the following questions:		
a.	Explain method of construction of environmental vectors, vector matrices and		and [6]
	summary matrix of double dynamic programming method for aligning structures using C_{β} vectors of amino acids by giving example.		

Give structural detail of most abundant type of secondary structures in proteins and [6] b. discuss about Helical structure in detail. Discuss structural role of Prolin and Glycine amino acids in polypeptide. OR Discuss structural details of possible secondary structures in proteins other than helix. [6] b. Answer the following questions: Q4. What is HMM? How it is useful in preparing discrete state-space model of protein [6] three-dimensional structure. Discuss Chou-Fasman method for secondary structure prediction of protein and [6] b. describe how it differs from GOR method. Explain Garnier, Osguthorpe, and Robson method for secondary structure prediction of [6] protein. Answer the following questions: Q5. Discuss neural network architecture for protein sequence processing through five [6] a. modules, A, C, D, H and M, to quantify the five types of compositional attributes. Describe structural 3-D profile method for detecting matches of a sequence to a [6] b. structural profile. OR List two main approaches of RNA secondary structure prediction and describe method [6] used in dynamic programming analysis for identifying the most energetically favorable configuration of linear RNA molecule in detail. Answer the following questions: Q6. List descriptors used in QSAR studies and discuss about ligand-receptor interaction [6] a. complementarities. Describe Sanjeevini a complete drug designing software suite of IIT Dolhi with [6] b. necessary details. OR Explain the base covariation method used to make RNA secondary structure predictions also discuss major difficulties of this method.

क्षाध्यक्षव्यव्यव