No. of Printed Pages: 3

[124]

SARDAR PATEL UNIVERSITY M.Sc (II Semester) Examinations Friday, 30th November, 2012 2.30 pm to 5.30 pm PS02CBIC01- Molecular Biology

Total marks: 70

1. Choose the correct answer.

 $(8 \times 1 = 8)$

- i) Which of the following is true about a circular double stranded DNA genome that i determined by chemical means to be 21% adenosine?
 - A) The genome is 10.5% guanosine
- B) The genome is 21% guanosine
- C) The genome is 29% guanosine
- D) The genome is 58% guanosine
- ii) Which of the following steps of translation does not consume high energy phosphate bond?
 - a. Translocation
- c. Peptidyl transferase reaction
- b. Amino acid activation
- d. Aminoacyl tRNA binding to A site
- iii) Deletion of a single base from a coding sequence of m-RNA may result in a polypeptide product with any of the following except:
 - A) A amino acids sequence that differs from the sequence of the logical polypeptide
 - B) A polypeptide with more amino acids
 - C) A polypeptide with less amino acids
 - D) A single amino acid replaced by another amino acid
- iv) RNA is very much susceptible to hydrolysis in alkali because
 - A) It contain Uracil residue in its structure
 - B) Its 2' OH group participates in cleavage of phosphodiester backbone
 - C) Cleavage occurs in the glycosylic bonds of purine base
 - D) Cleavage occurs in the glycosylic bonds of pyrimidine base
- v) Which of the following equation is correct for double stranded DNA
 - A) A+T=G+C
- B) G/A=T/C
- C) A+C=G+T
- D) A/G=C/T

1

A) DNA Helicase	B) Primase	C) Transposases	D) Reverse transcriptas	е	
) Telomerase is an enzyn	ne whose macro	molecular composition	on is		
A) Lipoprotein		B) Ribonucleo protein only			
C) Ribonucleic acid	C) Ribonucleic acid only		D) Protein only		
ii) Which of the following	g statement abou	ut post transcriptional	changes in RNA is true?		
A) Chemical modif	ications are ver	y rare in eukaryotic r	RNAs		
B) Splicing of intro					
C) Prokaryotic tRN	As do not unde	rgo any chemical mo	difications		
D) 5' cap in mRNA	is found in on	ly eukaryotes			
Write short notes on: (A	Attempt any se	ven):	(7 x 2	= 14	
Structure of ARS1 in year	st				
DNA polymerase α					
Conserved and consensus	s sequences			ř	
Functions of -10 and -35	promoters			7	
Wobble theory				19	
Role of IF-3 in translation	n in bacteria				
Aminoacyl tRNA synthe	tases				
) Thymine dimers					

2.

	Vi.	
3.	. (a) What is Tm value? How is it determined? What are its applications?	(6)
	(b) Give a comparative account of different forms of DNA	(6)
	OR	
	(b) Give a comparative account of mechanism of action of DNA polymerase and DNA ligase	(6)
4.	a) Explain the steps involved in initiation of transcription in bacteria in detail	(6)
	b) Write a note on Zinc finger and Helix-turn-helix proteins	(6)
	OR	
	b) Write a note on promoter clearance during transcriptional initiation in	
	eukaryotes	(6)
5.	 a) Give an account of termination of transcription by RNA polymerase II. Briefly write on the role of Poly (A) polymerase Binding Protein 	(6)
	b) Explain the role of snRNAs in intron splicing in detail	(6)
	OR	
	 b) Write a note on chemical modifications of rRNA and tRNA with suitable examples 	(6)
·	a) Describe the secondary and tertiary structure and functions of tRNA	(6)
	 b) Explain the role of elongation factors in eukaryotic protein synthesis. 	(6)
	OR	
	b) What is Operon? Explain gene regulation in bacteria with a suitable example	(6)
	XXXXXXXXXXX	

. 3

