SEAT No. No. of Printed Pages : 2 [44] ## SARDAR PATEL UNIVERSITY M. Sc. (II Semester) Biochemistry (under CBCS) Examination Friday, 13th April 2018 Time: 2.00 p.m. to 5.00 p.m. Paper: PS02CBIC03 (Enzymology) Total Marks: 70 N.B.: (i) Answers of all the questions (including multiple choice questions) should be written in the provided answer book only. (ii) Figures in the right indicate marks. | Q1. | Choose the most ap | propriate answer fo | the following multi | ple choice q | uestions: | (8) | |-----|--------------------|---------------------|---------------------|--------------|-----------|-----| |-----|--------------------|---------------------|---------------------|--------------|-----------|-----| - 1. The enzymes - (a) increase total energy of activation - (c) increase total energy of the product - (b) decrease total energy of activation - (d) increase the equilibrium constant - 2. In competitive inhibition - (a) Km is increased and Vmax is increased (c) Km is increased and Vmax is normal - (b) Km is decreased and Vmax is normal (d) Km is decreased and Vmax is increased - 3. Allosteric enzymes show all the following characteristics except, - (a) Sigmoid kinetics - (b) binding between substrate and regulatory sites - (c) Cooperative binding of the substrate - (d) Substrate binding sites and regulatory sites are different - 4. Which of the following is protease inhibitor? - (a) Di-isopropyl flurophosphate - (b) Phenyl methanesulfonyl fluoride - (c) N-4-toluenesulfonyl- L- phenylalanine chloromethyl ketone - (d) All of the above - 5. An example of competitive inhibition of an enzyme is the inhibition of - (a) succinic dehydrogenase by malonic acid - (b) cytochrome oxidase by cyanide - (c) hexokinase by glucose-6-phosphate - (d) carbonic anhydrase by carbon dioxide - 6. Fractional precipitation of one enzyme requires addition of 2.5 to 3.5 mM salt. Which of the following salts would you choose? - (a) silver chloride, AgCl - (c) ammonium perchlorate, NH4ClO4 - (b) ammonium sulfate, (NH4)2SO4 - (d) guanidinium chloride, CN3H6Cl - 7. The process by which a substrate binds to an active site and alters the shape of the active site is - (a) induced fit hypothesis - (c) enzyme engineering - (b) allosteric enzyme modeling - (d) none of the above - 8. A non-protein, organic molecule covalently bound to the active site, required to catalyze a reaction is termed as - (a) Cofactor (c) apoenzyme (b) prosthetic group (d) Coenzyme | Q2. Answer <u>any SEVEN</u> of the following questions briefly: (7 X 2 | | | | |--|-----------------------------|--|--| | Differentiate between cofactor and coenzyme. Differentiate between unit activity and specific activity. Differentiate between monomeric and oligomeric enzymes. Give examples of any four allosteric enzymes. Give examples (names) of any two enzymes present in nucleus of the enzymes have fragile structure? Define Salting in and salting out of proteins. What are ribozymes? Give example/s. Give two examples of anion exchangers and two examples of context of exchange chromatography. | | | | | Q3. (a) Using a flowchart, explain the steps involved in purification of a principle separation methods used in purification of enzymes. | an enzyme and list (6) | | | | (b) Explain any one method of homogenization of animal and plan isolation of enzymes. | t tissue used for (6) | | | | OR | | | | | (b) Explain the specificity of enzymes by giving examples. | (6) | | | | Q4. (a) Derive MM equation for single substrate reaction and explain it | s significance. (6) | | | | (b) Explain the kinetics of reversible enzyme inhibition. OR | (6) | | | | (b) Derive an equation for non-competitive inhibition | (6) | | | | Q5. (a) Explain in detail the mechanism of action of chymotrypsin. | (6) | | | | (b) Explain kinetic behaviour and physiological importance of allo | steric enzymes by | | | | giving suitable example/s. | (6) | | | | OR | | | | | (b) What is catalytic efficiency? Explain factors associated with the of an enzyme. | ne catalytic efficiency (6) | | | | Q.6 (a) Give examples and explain the regulatory enzymes that are ac and reversible covalent modification of a specific functional g(b) Explain Enzyme engineering and its applications. | | | | | OR | | | | | (b) Give example and explain enzyme repression, induction and d | egradation for control. (6) | | | | | | | |