[89] SEAT No. ____ SARDAR PATEL UNIVERSITY M. Sc. (Ist Semester) (under CBCS) Examination Monday, 29th October 2018 Time: 10.00 a.m to 1.00 p.m. Paper: PS 01EBIC22 (Biomolecules and Bioenergetics) Ne. of Printed Pages : 2 Max marks: 70 | Q-1. Choose the most appropriate answer for multiple choice questions. | | (8 Marks) | |--|---|--| | Which of the following mucopolysaccharides is non (a) Hyaluronic acid (b) keratin sulphate | sulfated and most abundant in (c) Heparin | n tissues? (d) Dermatan sulphate | | 2. Chitin is (a) Homopolymer of (β1 → GlcNAc (b) Heteroploymer of (β1 → GlcNAc | (c) Homopolymer of $(\beta 1 \longrightarrow 6)$ GlcNAc (d) Heteroolymer of $(\beta 1 \longrightarrow 6)$ GlcNAc | | | 3. Chymotrypsin cleave polypeptide chain at point of .(a) Phe, Trp, Try (C)(b) Asp,Glu (C) |
(c) Asp,Glu (N)
(d) Both b & c | | | 4. Which of the following options show all the matchin (a) (i)Nonpolar - Glycine, Isoleucine (ii)Polar - Proline, threonine (iii)Aromatic - Tyrosine, Tryptophan (iv)Negatively charged - Aspartate, lysine (b) (i)Nonpolar - Glycine, Isoleucine (ii)Polar - Cysteine, proline (iii)Aromatic - Tyrosine, Tryptophan (iv)Negatively charged - Asparagine, lysine | (c) (i)Nonpolar – Gly (ii)Polar – Cy (iii)Aromatic – Ty (iv)Negatively cha (d) (i) Nonpolar – G (ii)Polar – C (iii)Aromatic – ' | veine, Isoleucine
steine, threonine
vrosine, Tryptophan
arged –Aspartate, Glutamate | | 5. What is the isoelectric point of glycine, when the plant (a) 4.10 (b) 7.26 | K_1 value is 2.34 and p K_2 value (c) 5.97 | e is 9.60?
(d) 11.94 | | 6. The electrons flows from complex 3 to complex 4 in (a) Cytochrome C(b) Ubiquinone | s through (c) Succinate Dehydroger (d) Both A & C | nase | | 7. Although according to laws of thermodynamics, en normally observe increase in entropy or disorder in (a) living cells produce heat and entropy outside (b) chemical reactions in the living cells are an e (c) all energy related reactions takes place only i (d) bioenergetics allows reactions to occur without | the biological cells because
the system (cells) to preserve
exception to thermodynamic la
in mitochondria | e their internal order | | 8. Which of the following is a component of Succina (a) Niacin (b) FMN | nte dehydrogenase in Electron
(c) FAD | transport chain? (d) Lipoic acid | ## Q-2 Answer any seven from the following (14 Marks) - 1. Explain by suitable example that biological free-energy changes are additive. - 2. Explain in brief: Glycoconjugates. - 3. Explain epimeric compounds with suitable examples. - 4. Describe the biological importance of leukotrienes. - 5. Calculate the ratio of conjugate base to acid for an acetic acid of pKa of 6.0 and pH of 5.0. - 6. List out amino acids that frequently get modified in post translational modification of protein. - 7. Draw a labelled diagram of the Electron transport chain of mitochondria. - 8. Explain in brief with example: Oxygenases. - 9. Write the role of Prostaglandins as signaling compound. - Q.3 (a) Describe: Carbohydrate as informational molecules. (06) - (b) Draw structure of each & describe the common structural features and the differences in each pair: (06) - (i) Cellulose and glycogen - (ii) D-glucose and D-fructose - (iii) Maltose and sucrose OR (b) Narrate the industrial importance of any two polysaccharides. (06) Q.4 (a) Explain in detail: Phospholipid and glycolipids (06) (b) (i) Describe the structural characteristics of mRNA (ii) Comment on role of miRNA in regulation of gene. (03)(03) - (b) Explain in detail "Lipids as signaling molecules" - (06) - Q.5 (a) Explain important characteristics of peptide bond; and describe Ramachandran plot. (b) What is buffer? How do they resist change in pH? Derive Henderson and Hasselbalch equation. - (06)(06) - (b) What is pI value? Describe titration curve for either glycine or histidine. - (06) - Q.6 (a) Explain structure and function of ATP synthase (complex V) with suitable diagram. - (06) (b) Explain chemiosmotic model proposed by Peter Mitchell. - (06) - (b) Calculate the equilibrium constant K'_{eq} for each of the following reactions at pH 7.0 and 25° C, using the $\Delta G^{\prime o}$ values. At 25° C, RT = 2.48 kJ/mol. - (06) - (i) Glucose-6-phosphate + H_2O \longrightarrow Glucose + Pi ($\Delta G^{\prime o} = -13.8 \text{ kJ/mol}$) - (ii) Lactose + H₂O ← Glucose + Galactose - $(\Delta G^{\circ} = -15.9 \text{ kJ/mol})$ (iii) Malate ← → fumarate + H₂O $(\Delta G^{\prime\prime} = 3.1 \text{ kJ/mol})$