	M. Sc. (I Semester) Monday, Time: 10.0	TEL UNIVERSITY No. of Printed Pages: 2 Biochemistry Examination 16 th April 2018 0 am to 1.00 p.m. 1CBIC23 (Cellular Metabolism)
Total Marks: 70 N.B.: (i) Answers of all the questions (including multiple choice questions) should be written in the provided answer book only. (ii) Figures in the right indicate marks.		
Q1. Choose the most appropriate answer for the following multiple choice questions: (8)		
1.	. Phosphoglycerate kinase in glycolysis pro (a) Oxidative phosphorylation (c) Substrate level phosphorylation	(b) Oxidative decarboxylation
2.	2. The energy released by the breakage of the used to synthesize (a) a phosphoanhydride bond in GTP (b) a thioster bond in Acetyl-CoA (c) an ester bond in fatty acyl-CoA (d) the primary metabolite	nioester bond of succinyl-CoA in citric acid cycle is
3.	produces ATP molecules (a) 1	electrons transferred from complex I of ETC (b) 2 (d) 1.5
4.	Biosynthesis of ketone bodies is favoured (a) hypoglycemic (b) diabetic	t in cells under conditions. (c) starvation (d) all of the above
5.	 When the activity of Phosphofructo kinas (a) When ATP concentration is low (b) When ATP concentration is high (c) When Citrate and ATP both are in low (d) It has nothing to do with ATP concent 	v conncentration
6.	(a) Glucose 1- phosphate	n synthase reaction is (c) Glucose -6- phosphate (d) None of the above
7.	(a) α-ketoglutarate	pound shared by the TCA cycle and the urea cycle. (c) Oxaloacetate (d) fumarate
8.	All the second of the second o	t required for Glutathione biosynthesis. (c) Serine (d) Glycine

Q2. Answer any SEVEN of the following questions briefly: $(7 \times 2 = 14 \text{ Marks})$ 1. Differentiate between free energy change and standard free energy change. 2. Differentiate between Glucokinase and Hexokinase. 3. Differentiate between PFK-1 and PFK-2. 4. Which biomolecule is the major source of energy for hepatocytes during normal metabolism? Why? 5. What is the importance of PEP carboxykinase in metabolism? 6. What are anaploretic reactions? Give examples. 7. An amino acid that yields acetoacetyl-CoA during catabolism is glucogenic or ketogenic? 8. In which cells glucose -6- phosphatase enzyme is found? What is its subcellular location? 9. Name the amino acid sequence of peptide AFDOCTWYR Q3. (a) Explain the regulation of glycolysis. (6)(b) Explain the different fates of pyruvate in the cell. Also explain the conditions during which these fates are preferred. (6) (b) List the tissue where Pentose Phosphate pathway is found active and explain the reactions and importance of this pathway. (6)Q 4. (a) What are ketone bodies? Under which physiological conditions are they produced? (6) (b) Explain the oxidation of Myristoyl-coA and calculate the energy production by β - oxidation. (6) (b) Explain the reactions and importance of ω -oxidation. (6)Q.5 (a) Give any two examples and explain transamination reactions. (6)

(b) What is salvage pathway? Give the salvage pathway for pyrimidine biosynthesis. (6)

(6)

(6)

(6)

(6)

(b) Explain the regulation of the urea cycle.

(b) Explain the reactions for conversion of glycine to serine.

Q.6 (a) Explain the regulation of purine nucleotide biosynthesis.

(b) Write a denovo purine biosynthesis pathway.