5(

	1	7	J	
Ц	_			

SEAT No.____

No. of Pages To Be Printed: 02

SARDAR PATEL UNIVERSITY

M.Sc. (Applied Statistics), Semester III

PS03EAST21: (Planning and Analysis of Industrial Experiments)

22nd October 2018, Monday

Total Marks: 70

Q.1) Multiple Choice Questions.

[38]

- 1) For which values of N (No. of experimental runs) Placket-Burman Designs are NOT of interest?
 - a. 12
- b. 18
- c. 20

d. 28

- 2) The most efficient way to model a quadratic relationship is through
 - a. Response Surface Design
- c. Plackett-Burman Design
- b. 3^k Factorial Design
- d. Fractional Factorial Design
- 3) Which of these is NOT true for higher level "L" designs?
 - a. They retain plenty of information about main effects in less no. of runs
 - b. They provide plenty of information about interaction effects
 - c. They are orthogonal arrays
 - d. They require more runs than a 2^{k-p} Design
- 4) A 2^{3-1} fractional factorial design is most commonly, of
 - a. Resolution III

c. Resolution V

b. Resolution IV

- d. None of the above
- 5) How many latin square designs formed with the letters A, B, C, D?

c. 121

- a. 144
- b. 254
- d. None of the above
- 6) Consider 2^3 experiment with r = 2. If SSE = 18020.50 then SE(Effect) is;
 - a. 21.73
- c. 23.73
- b. 22.73
- d. None of above
- 7) If TSS=800 and RSS=690 with corresponding degrees of freedoms 11 and 5 respectively, then the adj. R^2 is
 - a. 0.7056
- b. 0.6979
- c. 0.7256
- d. 0.7479
- 8) If total of responses for treatments in a 2^2 factorial experiment with factor A and B from three replications are, $[a_0b_0] = 18$, $[a_1b_0] = 17$, $[a_0b_1] = 25$ and $[a_1b_1] = 30$ then sum of square due to interaction AB equal to;
 - a. 4
- b. 6 c. 3
- d. None of above

Q.2) Answer any seven.

[14]

- i) Give the geometrical representation of first order interaction effects in 2³ factorial experiments.
- ii) List the rule to construct sign table in three level factorial experiments.
- iii) List reasons to construct confounded factorial experiments.
- iv) Discuss method to obtain single missing value in randomized block design.
- v) What do you mean by design resolution?

- vi) Discuss the key principles of the use of fractional factorial designs.
- vii) Discuss advantages and disadvantages of three-level and mixed-level "L" Designs.
- viii) Briefly discuss about the location of a stationary point.
 - ix) What is Rotatability?
- Q.3)a) Estimate the model parameters of ANCOVA for one way classification with single [06] concomitant variable under unrestricted and restricted treatment effects.
 - b) Discuss Taguchi loss function and give orthogonal array of L4 and L8 designs. [06]

=0R=

b) A chemical engineer is investigating the yield of process. The process variable are of interest; temperature, pressure, concentration. The engineer decides to run a 2³-design with the four center points. The all treatment combination and corresponding yield is given as follow:

Fit the regression model for the given data.

- Q.4)a) Give geometrical view of 3³ factorial experiments. Discuss Yates method to compute [06] factorial total of effects for two factors each at three levels.
 - b) What is confounding? List advantages and disadvantages of confounding. Construct [06] (2⁵, 2³) signally replicated factorial experiment by confounding ABC and BDE interactions.

=OR=

- b) Construct (2⁵, 2³) balanced factorial arrangement in five replications so that main [06] effects and first order interactions remains unconfounded while (1/5)th of information on each of the 2nd and 3rd order interaction is lost.
- Q.5)a) Discuss canonical analysis.

[06]

b) Briefly discuss the analysis of the second order response surface model.

[06]

=OR=

- b) What do you mean by the Box-Behnken Design? How is it different from the Central [06] Composite Design?
- Q.6)a) Discuss the Alias Structures in Fractional Factorial of complex designs. [06]
 - b) Write a short note on Plackett-Burman Designs. [06]

=OR=

b) Discuss the 3^{4-2} Design in detail.

[06]

