_	. 7
500	88]
181	188
1 ~	·/

SEAT No._

No of Printed pages: 02

SARDAR PATEL UNIVERSITY M.Sc. (II Semester) Examination

Tuesday, 23rd October 10.00 am to 1:00 pm STATISTICS COURSE No. PS02CSTA21/PS02CSTA01

(Stochastic Processes)

Note: Figures to the right indicate full marks of the questions. (Total Marks: 70)

For a finite, absorbing Markov chain with one and ergodic	one absorbing state, the other state are b) recurrent	
c) transient	d) none of these	
{N(t), t≥0} is a Poisson process with inten a) 2/3 c) exp(-2/3)	d) 1	
A radioactive element emits with rate λ , at 0.6. Then the rate of recorded emission is	nd emission is recorded with probability	
a) 0.4 λc) λ	b) 0.6 λ d) 0.4(1- λ) [.5 .5 0]	
For a doubly stochastic Markov chain the	unfilled elements in 0 .4 are	
a) 1, 0 c) .4, .6	d) None of these	
In usual notation, the p ₀ (t) for any discret a) P(0, s) c) P(0,t)	te state space Markov process is given by b) P(s, 0) d) P(s, t)	
The ultimate extinction of a geometric by 1 is sure when $\underline{}$ a) $q < 1$		
c) $a < p$		
and W(5) is a) $15\sigma^2$ c) $10\sigma^2$	 b) 5σ² d) None of these 	
The Ornstein-Uhlenbeck process is anal a) simple random walk process c) AR(1) process	logues of which of the following? b) AR(2) process d) Weiner process	
Give classification of stochastic process	ses, giving theoretical as well as a practical	14
	 a) 0.4 λ c) λ For a doubly stochastic Markov chain the a) 1, 0 c) .4, .6 In usual notation, the p₀(t) for any discreta) P(0, s) c) P(0,t) The ultimate extinction of a geometric bit is sure when a) q<1 c) q≤p If Weiner process has mean 0 and variation and W(5) is a) 15σ² c) 10σ² The Ornstein-Uhlenbeck process is analal a) simple random walk process c) AR(1) process Attempt ANY 7, each carries 2 mark Give classification of stochastic process 	a) 0.4λ b) 0.6λ d) $0.4(1-\lambda)$ For a doubly stochastic Markov chain the unfilled elements in $\begin{bmatrix} .5 & .5 & 0 \\ 0 & .4 \\ .5 & .1 \end{bmatrix}$ are a) $1,0$ b) $.6,.4$ c) $.4,.6$ b) $.6,.4$ d) None of these In usual notation, the $p_0(t)$ for any discrete state space Markov process is given by a) $P(0,s)$ b) $P(s,0)$ c) $P(0,t)$ d) $P(s,t)$ The ultimate extinction of a geometric branching process $\{X_n, n \ge 0\}$ having $X_0 = 1$ is sure when a) $q < 1$ b) $p \le q$ d) $q < 1/2$ If Weiner process has mean 0 and variance $\sigma^2 t$ then covariance between $W(10)$ and $W(5)$ is a) $15\sigma^2$ b) $5\sigma^2$ c) $10\sigma^2$ b) None of these The Ornstein-Uhlenbeck process is analogues of which of the following? a) simple random walk process b) $AR(2)$ process c) $AR(1)$ process Attempt ANY 7, each carries 2 marks Give classification of stochastic processes, giving theoretical as well as a practical

	$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 3 \end{bmatrix}$	
(c)	Write brief note on Markov chain having TPM $\begin{bmatrix} 1 & 0 & 0 \\ .3 & .4 & .3 \\ .2 & .1 & .7 \end{bmatrix}$	
(d)	Define Ehrenfest Markov chain having 4 states.	
(e)	What is compound Poisson process and homogeneous Poisson process?	
(f)	Show that $P\{N(s)=k \mid N(t)=n\}$ is related the binomial probability function where $N(t)$ denotes Poisson process events in time interval $t>0$.	
(g)	State two important results of discrete branching process.	
(h)	Define pure birth process and obtain the first term in its probability distribution.	
(i)	Write down the partial –differential equations for the linear growth process having increment and death rates as, $\lambda_n = n\lambda$, $\mu_n = n\mu$.	
(j)	Define standard Weiner process. Also mention about its use.	
3(a)	Define Random Walk Model. Discuss its properties.	06
3(b)	Show in usual notation for absorbing Markov chain that $A = NR$. OR	06
3(b)	State and prove a result about Gambler's ruin chain.	
4(a)	Define Poisson process. Show that sum of two Poisson processes is a Poisson process. Also derive the probability distribution of waiting times.	06
4(b)	Let $X(t) = \sum_{i=1}^{N(t)} Y_i$ where $N(t)$ is a Poisson process and Y's are iid random variables. Obtain mean and variance of $X(t)$.	06
4(b)	Explain nonhomogeneous Poisson process. Why it is called a generalization of noisson process?	
5(a)	Explain birth and death process. Obtain its difference differential equations.	06
5(b)	Define pure death process. Assuming suitable initial value show that its probability model is binomial with probability parameter $exp(-\mu t)$, $t \ge 0$, μ is death	06
	rate. OR	
5(b)	What is Yule-Fury process? Obtain its probability generating function.	
6(a)	Define Weiner process and derive its transition probability density function.	06
6(b)	c vice in process along with that of infinitesimal conditional	06
6(b)	the Wainer process and the Ornstein-Uhlenbeck	

--- X ---