SEAT No.[49]

Sardar Patel University External Examination

M.Sc. Applied Statistics Semester IV (NC)

PS04EAST22:Econometrics

December 29, 2020, Tuesday

Ma Q1(a)	rks: 70 Multiple (Choice Questions:		Times: 10:00 a.m. to 12:00 p.m.		
i.	In context to scaling of residuals in the regression analysis, $ t_i > 3$ indicates, presence of in data.					
	(a)	Leverage point,	(b)	Influential point		
	(c)	outlier	(d)	Extreme point		
ii.	In usual notation, in context ridge regression, the MSE of ridge estimator (MSE($\hat{\beta}_R$)) is					
	defined by	<u></u> .		_		
	(a)	$\sum_{j=1}^{k} \left[\frac{\sigma^2 \lambda_j + \vartheta^2}{(\lambda_j + \vartheta)^2} \right]$ $\sum_{j=1}^{k} \left[\frac{\sigma^2 + \vartheta^2 \beta_j^2}{(\lambda_j + \vartheta)^2} \right]$	(b)	$\sum_{i=1}^{k} \left[\frac{\sigma^2 \lambda_j + \vartheta^2 \beta_j^2}{(\lambda_j + \vartheta)^2} \right]$		
	(c)	$\sum_{i=1}^{k} \left[\frac{\sigma^2 + \vartheta^2 \beta_j^2}{(\lambda_j + \vartheta)^2} \right]$	(d)	$\sum_{j=1}^{k} \left[\frac{\sigma^2 \lambda_j + \vartheta^2 \beta_j^2}{(\lambda_j + \vartheta)^2} \right]$ $\sum_{j=1}^{k} \left[\frac{\sigma^2 \lambda_j + \vartheta^2 \beta_j^2}{(\lambda_j + \vartheta)} \right]$		
iii.	In context to the linear regression relation between the t and F statistic is					
	(a)	$t = \sqrt{F}$	(b)	t= F		
	(c)	$t = F^2$	` '	F = t/N(0,1)		
iv.	In context	t to the regression analysis, i	f the Durb	oin Watson test statistic (d) is		
	then we say the presence of negative autocorrelation.					
	(a)	2	(b)	4		
	(c)	$4 - d_L < d < 4$	(d)	0 < d < d		
v.	The Indire	ect Least Squares procedure of	estimation is	s appropriate when simultaneous		
	(a)	Just or exact identified	(b)	Over identified		
	(c)	Not identified	(d)	Under identified		
vi.	In the simu	iltaneous-equation models, numb	er of structu	ral form coefficients are less than		
	number of	reduced form coefficients then give	ven system i	S		
	(a)	over identified	(b)	under identified		
••	(c)	exact identified	(d)	recursive system		
vii.	In context t	to the multicolinearity if the value	of Variance	Inflation Factor corresponds to j-th		
	regressor (V	$(1F_j)$ is 10 then value of R_j^2 is	·			
	(a)	0.25	(b)	0.7		
viii.	(c)	0.5	(d)	0.9		
VIII.	Multiple linear regressions with p regressors, the Cook distance statistic D_i for i^{th} point is defined as					
	(a)	r <mark>i</mark> h _{ii}	(b)	h _{ii} r:²		
		\overline{p} $\overline{(1-h_{ii})}$. ,	$\frac{h_{ii}r_i^2}{p}$		
	(c)	r_i^2 h_{ii}	(d)	r _i h::		
		$\frac{\frac{r_{i}^{2}}{p}\frac{h_{ii}}{(1-h_{ii})}}{\frac{r_{i}^{2}}{p^{2}}\frac{h_{ii}}{(1-h_{ii})}}$	\ /	$\frac{r_{\rm i}}{p^2} \frac{h_{\rm ii}}{(1-h_{\rm ii})}$		
		r /- '- '- '- '- '- '- '- '- '- '- '- '- '-		b (r mil)		

- 1. Under which condition, the Principal Component Regression Analysis is applicable?
- 2. Define BIC.
- 3. What do you mean by Pooled data? What is an alternate name of it?
- 4. For the model $y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \varepsilon_i$, $i = 1, \dots, n$, what is the degrees of freedom error?
- 5. Give the relation between the F and R^2 .
- 6. Define endogenous variable.
- 7. TRUE or FALSE: In usual notation in the multiple linear regression with k variables having n observations, the distribution of Explained Sum of Square (ESS) is χ_{n-k}^2 .
- 8. TRUE or FALSE: The Model $Y_i = \beta_1 + \beta_2 \left(\frac{1}{X_i}\right) + \varepsilon_i$ is known as reciprocal model.
- 9. TRUE or FALSE: In context to simple linear regression, the variance of future observation (y_0) based on value of the regression variable of interest (x_0) is $\sigma^2\left(\frac{1}{n} + \frac{(x_0 \overline{x})^2}{s_{xx}}\right)$
- 10. TRUE or FALSE: In the Classical Linear Regression Model, LS estimate and ML estimate of σ^2 are unique.
- 11. TRUE or FALSE: In dummy variable regression, the Chow test is used to check presence of autocorrelation.
- 12. The Hausman Specification test is a test of _____.
- 13. In presence of the multicolinearity ______ estimator is considered to be best.
- 14. _____method is used to choose appropriate value of bias constant in ridge regression.
- 15. _____ test of autocorrelation is also a test of model misclassification.
- 16. _____point which does not affect the slope coefficient of regression line.
- Q2. Short answer questions (Any Seven)
 - i. Give any two definition of Econometrics.
 - ii. Distinguish between R^2 and Adj. R^2 .
 - iii. List the steps of Research Methodology of Econometries.
 - iv. Write order conditions in system of simultaneous equations.
 - v. In context to the multicolinearity, define VIF and Conditional Index.
 - vi. Define the heteroscedasticity. Write the name of two formal tests to detect it.
 - vii. Define Durbin Watson Statistic. Give its application in Econometires.
 - viii. Define Aitken estimator. Under which condition Aitken estimator reduces to OLS estimator.
 - ix. Is $y = exp(\beta x)$ is intrinsically linear model? Why?

Q3	Define Classical Linear Regression Model. Further obtain OLS estimate and ML estimate		
	of β and σ^2 .		
	_ [OR]		
Q3	In usual notation, discuss constraint least squares method.	08	
Q4	Explain tests for detecting hetroscedasticity.		
	[OR]		
Q4	Define Autocorrelation. Is an autocorrelation creating problem in estimation of parameters	08	
	in CLRM? Explain in detail.		
Q5	Explain dummy variable regression model.	08	
	[OR]		
Q5	Explain methods to detect multicolinearity.	08	
Q6	In context of Econometrics, discuss simultaneous equations in detail.		
-	[OR]		
Q6	Is OLS method suitable to estimate parameters in simultaneous equations? Why? Further	80	

