a)

c)

Truncated Exponential

Laplace Distribution

SARDAR PATEL UNIVERSITY

M.Sc. (Applied Statistics), Semester I

PS01CAST21: (Statistical Distributions and their Applications)

	22 October 2	.018,	Monday		
Time: 1	0:00 AM- 01:00PM			Marks: 70	
Q.1)	Attempt all Multiple Choice Questions			[8]	
i)	Which of the following is a particular parameterization of the Beta distribution of the				
,	second kind?				
	a) Exponential Distribution	c) l	F-Distribution		
	b) Student's t-Distribution	d) (Gamma Distribution		
· ii)	Which of these distributions is referred to when testing for equality of a pair of means?				
•	a) Chi-Squared Distribution		b) F-Distribution		
	c) Student's t-Distribution		d) Wishart Distribution		
iii)	Which of these distributions would you use to fit the flight arrival/departure rate at an				
•	airport?				
	a) Poisson Distribution		b) Exponential Distribution		
	c) Normal Distribution		d) Bernoulli Distribution		
iv)	Which of these is a real-life application of th	e Bi	nomial Distribution?		
	a) To fit the number of road accidents in a	b)	To fit the amount of money collected	ed at	
	busy road		a toll booth		
	c) To fit the frequency of a particular	d)	To fit the number of cars parked in	a	
	sound wave		particular parking space		
v)	If $\underline{X} = [X_1 \ X_2 \ X_3 \ \dots \ X_p]$ ' follows a p-variate Normal Distribution with parameters				
	$\underline{\mu}$, and covariance matrix Σ , then				
	a) The marginal distributions of X_i , $i =$	b)	Any sub-vector of X of order k×1		
	1,2,,p, follow Univariate Normal		follows a k- variate Normal		
	Distributions		Distribution		
	c) Σ is a symmetric positive semi-definite	d)	All of the above	•	
	square matrix of order p.				
vi	If $\underline{X} = [X_1 \ X_2 \ X_3 \ \dots \ X_p]$ ' follows a p-variate Normal Distribution with parameters				
	$\underline{0}$, and covariance matrix $\Sigma = I$, then $\underline{X}'\underline{X}$ follows				
	a) Wishart Distribution with p d.f. b)	Chi-	Squared Distribution with p d.f.		
-	,		istribution with p d.f.		
vii)	Which of these is NOT true for the Cauchy Distribution?				
	a) It is basically a transformation taken	b)	Its Moment Generating Function doe	es	
	on a $U(-\pi,\pi)$ variate		not exist		
	c) Its Characteristic function exists	d)	Cannot be randomly generated using	•	
			Probability Integral Transformation		
viii)	Another name of double exponential distribution is				

b)

d)

Exp. with location and scale parameter

Two parameter Weibull

Q.2) Attempt any seven.

[14]

- i) Derive the Hazard Rate for an Exponential Variate with mean 10.
- ii) Write down the m.g.f of the three-parameter Gamma Distribution. Use it to derive its mean and variance.
- iii) Write down the p.d.f of the Beta distribution. Derive its rth order moment.
- iv) Write down all the important properties of the Univariate Normal Distribution.
- v) Show that the sum of any number of Bernoulli variates gives a Binomial variate.
- vi) Generate any 3 values of a one-parameter Exponential variate with variance 16, using Probability Integral Transformation.
- vii) The p.g.f of a random variable X is given as $P_X(t) = [(1-p) + tp]^n$; $t \ge 0, 0 \le p \le 1, n = 0,1,2,...$ Obtain the value of $P(X \le 2)$, and identify the distribution of X.
- viii) Derive the m.g.f of the Geometric Distribution and hence obtain its mean and variance. Also write down its applications.
- ix) Write a short note on the Log-Normal Distribution.
- x) If a random variate $X \sim U\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then find the distribution of $Y = \tan X$.
- Q.3)a) Derive the p.d.f of the F-Distribution. Write down its applications.

[6]

b) Derive the m.g.f of a three-parameter Weibull variate. Hence, obtain its mean, and [6] variance.

== OR ==

- b) Derive the Characteristic Function of the Cauchy Distribution. State its relation with t-distribution having 1 degree of freedom.
- Q.4)a) Derive the p.d.f. of the central Chi-squared Distribution. Also, write down its properties. [6]
 - [6]

b) Derive the Distribution Function of the Laplace Distribution.

== OR ==

b) A r.v X has Poisson distribution with mean λ , while the conditional distribution of Y for [6] given X = x (x = 0,1,2,...) is a Poisson variate with mean μx . Obtain the p.g.f of Y

Q.4)a)	Derive the m.g.f. of the Pareto Distribution.	[6]
, b)	Obtain the Hazard Rates of:	
, 0)	i. Pareto Distribution	
	ii. Weibull Distribution (3-parameter)	
•	iii. Logistic Distribution	
	==OR==	
b)	A R.V. X has a lognormal distribution with mean $e^{\mu + \frac{\sigma^2}{2}}$. Derive its r^{th} order moment and, hence, derive Skewness and Kurtosis.	[6]
Q.6)a)	Obtain the mean and variance of the Hypergeometric Distribution.	[6]
b)	Write down the p.d.f of the non-singular Multinomial Distribution, obtain its m.g.f, and	[6]
	hence, obtain its mean and variance.	
	==OR $==$	
b)	Write down the characteristic function of the Multivariate Normal Distribution. Hence show that any linear combination of a Multivariate Normal vector is also Multivariate Normal.	[6]
	-x —	

×