No. of printed pages: 2

SARDAR PATEL UNIVERSITY

Master of Computer Applications (MCA)

Semester - III External Examinations

PS03CMCA23 - Analysis and Design of Algorithms

Saturday, 24th November, 2018

Time:	02:00 p	.m. to 05:00 p.m.	•	Max	arks: 70
Q1.	Choose the most appropriate option for each question. Pseudo code notation is used to indicate assignment statement, while writing algorithm.				[8]
i.					
	(A)	= ,	(C)	======================================	
	(B)	100	(D)	All of these	
ii.	While	measuring performance of	an algorith	m, the space and time needed for compilation is $_$	_
	(A)	Not considered	(C)	Considered	
	(B)	Optional	(D)	Averaged	
iii.	Knapsa	Knapsack problem fits in the category of			
	(A)	Ordering Paradigm	(C)	Both (A) & (B)	
	(B)	Subset Paradigm	(D)	None of these	
iv.	is	is a Boolean valued function that determines whether x can be included into the solution			
	or not, in greedy method.				
	- (A)	Select	(C)	Project	
	(B)	Union	(D)	Feasible	
٧.	Tree organizations which are problem instance dependent are called				
	(A)	Hybrid trees	(C)	Dynamic trees	
	(B)	Static trees	(D)	None of these	
vi.		is a generated node which is to be expanded further.			
	(A)	Dead node	(C)	Live node	
	(B)	E-node		None of these	
vii.		are those problem states s for which the path from the root to s defines tuple in			
	the so	lution space.			
	(A)	Answer states		Both (A) & (B)	
	(B)	Solution states	(D)	None of these	
viii.	are rules that restrict each xi to take on values only from a given set.				
	(A)	Implicit Constraints	(C)	Both (A) & (B)	
	(B)	Explicit constraints	(D)	None of these	
Q2.	Answer the following questions (Any Seven):				
a.	List types of recursive algorithms.				
b.	What is space complexity of an algorithm? Which are two components of it?				
C.	Briefly explain the concept of tree.				
d.	Compare Heapify and Insert algorithms briefly.				
e.	What do you mean by "Feasible Solution" of a problem?				•
f.	Define: Principle of Optimality.				
g.					.7:0.)
5'	OIVE 0	·		(1)	` "/
			Pa	age 1 of 2	

- h. What is Hamiltonian cycle? Give an example. i. What is 0/1 Knapsack problem? Answer the following questions: Q3. What is Algorithm? Explain criteria to design an algorithm. a. [6] What is asymptotic notation? Define all asymptotic notations; explain any one of them in b. [6] detail. OR Write an algorithm for finding maximum and minimum element in given set using divide and [6] conquer method. Q4. Answer the following questions: Explain the knapsack problem in detail. Write the algorithm to solve this problem. a. [6] Find the minimum cost spanning tree for following graph G, using Prim's method. Show all [6] intermediate steps. Explain the logic of Dijkstra's algorithm. Show the execution of Dijkstra's algorithm by giving b. [6] example of your choice. Q5. Answer the following questions: Write an algorithm of multistage graph problem (Forward approach). Explain it taking suitable [6] example. Explain n-queens problem taking suitable examples. b. [6] Write algorithm of Hamiltonian cycle problem. Explain it taking suitable example. b. [6] Answer the following questions: Q6. Write and explain an algorithm of Least Cost search. a. [6] Explain the 15-puzzle problem taking suitable example. b. [6] Consider the travelling salesperson instance defined by the following cost matrix: b. [6]
 - ∞ 8 3 7 ∞ 5 4 6 ∞
 - (i) Obtain the reduced cost matrix.
 - (ii) Generate its state space tree using Least Cost Branch-and-Bound.

