

SARDAR PATEL UNIVERSITY

Master of Computer Applications (MCA)

Semester - III External Examinations

PS03CMCA04 - Analysis and Design of Algorithms Saturday, 24th November, 2018

		Satar	auy,	110101111011 =		
		p.m. to 05:00 p.m.			Max Marks: 70 [8]	
Q1.	Choose the most appropriate option for each question.					
i.	Ps	eudo code notation is used	to indicate	assignment statement, while writ	ting algorithm.	
	(A) ·	=	(C)	==		
	(B)	:=		All of these		
ii.	While measuring performance of an algorithm, the space and time needed for				compilation is	
	(A)	Not considered	(C)	Considered		
	(B)	Optional	(D)	Averaged		
iii.	Knapsack problem fits in the category of					
	(A)	Ordering Paradigm	(C)	Both (A) & (B)		
	(B)	Subset Paradigm		None of these		
iv.	is a Boolean valued function that determines whether x can be included into the solution					
	or not,	, in greedy method.				
	(A)	Select	(C)	•		
	(B)	Union	(D)			
v.						
	(A)	Hybrid trees	(C)	Dynamic trees		
	(B)	Static trees		None of these		
vi.						
	(A)	Dead node	(C)	Live node		
	(B)	E-node	(D)	None of these		
vii.	$\underline{\hspace{1cm}}$ are those problem states s for which the path from the root to s defines tuple in					
	the so	lution space.				
	(A)	Answer states	(C)	Both (A) & (B)		
	(B)	Solution states	(D)	None of these		
viii.	are rules that restrict each xi to take on values only from a given set.					
	(A)	Implicit Constraints		Both (A) & (B)		
	(B)	Explicit constraints	(D)	None of these		
	_			١.	[14	11
Q2.						΄, Τ
a.	List types of recursive algorithms.					
b.	What is space complexity of an algorithm? Which are two components of it?					
c.	Briefly explain the concept of tree.					
d.	Compare Heapify and Insert algorithms briefly.					
e.	What do you mean by "Feasible Solution" of a problem?					
f.	Define: Principle of Optimality.					
g.	Give an example of sum of subset problem.					
ه٠ h.		is Hamiltonian cycle? Give a				
11.	vviiat	is claimitornan cycle: Give t		•	•	
			P	age 1 of 2	(P.T.A.)	

- i. What is 0/1 Knapsack problem?
- Q3. Answer the following questions:
- What is Algorithm? Explain criteria to design an algorithm. a.

[6]

What is asymptotic notation? Define all asymptotic notations; explain any one of them in [6] detail.

OR

- Write an algorithm for finding maximum and minimum element in given set using divide and b. [6] conquer method.
- Q4. Answer the following questions:
- Explain the knapsack problem in detail. Write the algorithm to solve this problem. a.

[6]

Find the minimum cost spanning tree for following graph G, using Prim's method. Show all [6] b. intermediate steps.

- Explain the logic of Dijkstra's algorithm. Show the execution of Dijkstra's algorithm by giving b. [6] example of your choice.

- Answer the following questions: Q5.
- Write an algorithm of multistage graph problem (Forward approach). Explain it taking suitable a. [6] example.

Explain n-queens problem taking suitable examples. b.

[6]

- Write algorithm of Hamiltonian cycle problem. Explain it taking suitable example. b.
- [6]

- Q6. Answer the following questions:
- Write and explain an algorithm of Least Cost search.

[6]

Explain the 15-puzzle problem taking suitable example. b.

[6]

Consider the travelling salesperson instance defined by the following cost matrix: b.

[6]

$$\begin{bmatrix}
\infty & 8 & 3 \\
7 & \infty & 5 \\
4 & 6 & \infty
\end{bmatrix}$$

- (i) Obtain the reduced cost matrix.
- (ii) Generate its state space tree using Least Cost Branch-and-Bound.

