

SEAT No.

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

Master of Computer Applications (MCA)

Semester - III External Examinations

PS03CMCA04 - Analysis and Design of Algorithms

11th April, 2019, Thursday

Time	e: 02:00	p.m. to 05:00 p.m.		′ Max Marks: 70	
Q1.	Choose	e the most appropriate opti	on for eac	h question.	[8]
i.	Which of the following can be used with Find operations efficiently?				
	(A)	Merge Rule	(C)	Collapsing Rule	
	(B)	Search Rule	(D)	None of these	
ii.	The asymptotic notation is used to represent the maximum time required for the				
	completion of execution of an algorithm.				
	(A)	Big-Oh	(C)	Omega	
	(B)	Theta	(D)	None of these	
iii.	Optimal Storage on Tapes problem fits into				
	(A)	Subset Paradigm	(C)	Ordering Paradigm	
	(B)	Sorting Paradigm	(D)	All of these	
iv.	The data structure that supports the operation of search min (or max), insert and delete min				
	(or max) is called a				
	(A)	Priority Queue	(C)	Both (A) & (B)	
	(B)	Неар	(D)	None of these	
v.	Tree organizations which are problem instance independent are called				
	(A)	Dynamic trees	(C)	Both (A) & (B)	
	(B)	Hybrid trees	(D)	None of these	
vi.		is a generated node which is not to be expanded further.			
	(A)	Live node	(C)	Dead node	
	(B)	E-node	(D)	None of these	
vii.	are those problem states s for which the path from the root to s defines tuple in				
	the solution space.				
	(A)	Solution states	(C)	Both (A) & (B)	
	(B)	Answer states	(D)	None of these	
viii.	are rules that do not restrict each x_i to take on values only from a given set.				
	(A)	Implicit constraints	(C)	Both (A) & (B)	
	(B)	Explicit constraints	(D)	None of these	
Q2.	Answe	er the following questions ():	[14]	
a.	Differentiate: Heapify and Insert.			•	
b.					
c.		• •	- 4-7	(B.T.9)	
d.	what	is main idea of greedy meth	oas:	Ck409	
				(1)	

- What is Knapsack problem? e. f. Discuss principal of optimality with an example. Define: n-queens problem. Give an example. g. h. What is Optimal binary Search Tree? i. Explain graph coloring problem. Q3. Answer the following questions: Explain the term algorithm. How can one judge an algorithm in various aspects?. a. [6] What is binary tree? Explain the method of representing binary tree as an array. b. [6] OR b. Write Heapify algorithm. [6] Answer the following questions: Q4. Explain the measures on the basis of which one can decide which object to be selected next in a. [6] knapsack problem. Discuss the Prim's method for finding the minimum cost spanning tree. Also show proper b. [6] example. OR b. Explain single source shortest path problem by giving suitable example. [6] Q5. Answer the following questions: Write an algorithm of multistage graph problem (Backward approach). Explain it taking suitable a. [6] example. b. Write algorithm of Hamiltonian cycle problem. Explain it taking suitable example. [6] OR b. Write algorithm of graph coloring problem. Explain it taking suitable example. [6] Q6. Answer the following questions: a. Discuss Least Cost search in detail taking suitable examples. [6] Explain the 15-puzzle problem taking example of DFS approach. b. [6] Consider the travelling salesperson instance defined by the following cost matrix: b. [6]
 - (i) Obtain the reduced cost matrix.
 - (ii) Generate its state space tree using Least Cost Branch-and-Bound.

Page 2 of 2