Note: Write answers of both the sections in separate answer sheets.

Section-I

Q. 1 (a) Attempt any two:
(i) Solve the system of equations

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =6 \\
x_{2}+2 x_{3} & =7 \\
2 x_{3} & =6
\end{aligned}
$$

by using back substitution method.
(ii) Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$. Find $A^{2}-4 A$.
(iii) Convert $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 1 & 2\end{array}\right]$ into upper triangular form.
(b) Attempt any one:
(i) Find the rank of $\left[\begin{array}{rrrrrr}2 & 1 & 10 & 11 & 1 & 16 \\ 3 & 2 & 17 & 20 & 2 & 28 \\ 1 & 1 & 7 & 9 & 3 & 22 \\ 2 & 1 & 10 & 11 & 5 & 36\end{array}\right]$.
(ii) Find basic solutions of the following system of equations.

$$
\begin{aligned}
x_{1}+x_{3}+3 x_{4}+4 x_{5}+3 x_{7} & =0 \\
x_{2}+4 x_{3}+7 x_{4}+2 x_{5}+4 x_{7} & =0 \\
x_{6}+5 x_{7} & =0
\end{aligned}
$$

Q. 2 (a) Attempt any two:
(i) Solve $a_{n+2}-11 a_{n+1}+24 a_{n}=0$.
(ii) Find characteristic roots of $a_{n+3}-3 a_{n+2}+3 a_{n+1}-a_{n}=0$.
(iii) Solve $4 a_{n+2}-4 a_{n+1}+a_{n}=0$.
(b) Attempt any one:
(i) Solve $a_{n+2}-7 a_{n+1}+12 a_{n}=5\left(10^{n}\right)$.
(ii) Solve $a_{n+1}-7 a_{n}=(2+n) 3^{n}$.
Q. 3 (a) Attempt any two:
(i) Define contradiction and give one example of it.
(ii) Using truth table show that $\rceil(P \vee Q) \Leftrightarrow\rceil P \wedge\rceil Q$.
(iii) Using mathematical induction show that $2^{n}<n!, n=4,5,6, \ldots$
(b) Attempt any one:
(i) Find the principal disjunctive normal form of $\rceil P \vee Q$.
(ii) For atomic variables P, Q, R, write all maxterms and minterms.

Section - II

Q. 4

[A] Answer the following questions:
(i) Define the term graph. Explain components of graph with example.
(ii) Explain subgraphs with suitable example.
(iii) Explain the concept of cut-sets.
[B] Write a note on incidence matrix.
Q. 5
[A] Prove: A tree with n vertices has $n-1$ edges.
[B] Define spanning tree. What do you mean by rank and nullity of graph?
Explain a method of finding all spanning trees in a graph.
Q. 6
[A] Prove: The number of vertices of odd degree in a graph is always even.
[B] Answer the following questions:
(i) Differentiate between connected graph and complete graph.
(ii) Draw binary trees of 11 vertices with possible maximum and minimum height.
(iii) Draw and explain minimally connected graph.

