SARDAR PATEL UNIVERSITY

M.C.A Master of Computer Applications

Semester -V External Examinations, October 2018

PS05CMCA01 - Artificial Intelligence

Time:	2:00	p.m to 05:00 p.m.	Tuesday, 23r	d Octo	ber, 2018	Max Marks: 7	0	
Q1.	Choo	se the most appropriate o	option for each que	stion.		•	[8]	
i.		t.						
	A)	Covering	_	В)	Turing			
	C)	Partioning	ſ))	Fuzzy			
ii.	•	approach is als	o called as goal dire	ected/	driven approach.			
	A)	Forward chaining		B)	Backward chaining			
	C)	BFS		D)	All of these			
III.	•	rule ~P=>~Q and Q is true,						
	A)	Modus Ponens		В)	Modus Tollens			
	C)	Chain Rule		D)	None of these			
iv.	Quantifiers are not present in logic.							
	A)	Predicate		B)	Proposition			
	C)	Both A and B		D)	None of these			
v.	is an artificial neural network model that uses parallel relaxation.							
	A)	Perceptron model	В)	Koh	onen model			
	C)	Hopfield model	D)	All c	of these			
vi.	The	principle of genetic algorit	hm is based on	**************************************	·			
	A)	Natural evolution	B)	Fine	logic			
	C)	Statistics	D)	Bina	ry logic			
vii.		is the characteristic	of an agent.					
	A)	Pro-activeness	B)	C	o-operation	. •		
	C)	Autonomy	D)	Αl	l of these			
viii.		method of lea	ning in ANN require	es data	asets.			
	A)	supervised	B)	Uns	upervised	:		
	C)	Parallel	D)	Non	e of these	-		
Q2.		wer the following question	ns (Any Seven):				[14]	
a.	Diffe	rentiate between CBIS and	d KBS.					
b.	Writ	e only algorithm for gener	ate – and – test me	thod.				
c.	Defi	ne fuzzy set and give one e	xample of fuzzy set	t.				
d.		any four components of pr			4			
e.	Give	any two activation function	ons of ANN.					
f.		ne knowledge managemer		its adv	vantages.			
g.	Expl	ain (i) mutation and (ii) cro	ossover in binary er	ncodin	g in GA.			

Define soft computing. Also list constituents of soft computing.

List any two applications of AI that make the Web intelligent.

h.

i.

	ille getierai	structure o	of KBS. Also iis	st and explai	n any one ca	regory or	KBS in dei	all.
∖nsw	er the follo	wing quest	ions:	•				
			zy rule based			(0 4) (0.05)	··· 1
		$= \{(x1,0.3)$), (x2,0), (x3,	0.7)} and B	$=\{(x1,0.6),$	(x2,1), (x3,0.7)} I	-ına
•	$A \oplus \widetilde{B}^c$ $A \oplus \widetilde{A} \oplus \widetilde{B} \cap A$	ıã						
(2	. (A (D D) I							
- C	•		معربات والمراجع	OR	aa wiith thair	uco in dot	ail by taki	ina
	e tuzzy prep ble example		d discuss fuzz	zy connective	es with their	use in uei	an by taki	IIIB
iuitas	bic caumpic	J.						
_								
	er the follo							_
Draw	biological n		ions: an artificial n	euron. Also	explain how	an artifici	al neuron	is
Draw work	biological n ing.	neuron and	an artificial n				al neuron	is
Draw work	biological n ing.	neuron and					al neuron	is
Draw worki Expla	biological n ing. in in detail l gn a neural r	neuron and how a perce	an artificial n	a linearly se OR e based on f	parable prob	lem.		
Draw worki Expla	biological n ing. in in detail l	neuron and	an artificial n	a linearly se OR	parable prob	lem.	al neuron	is 03
Draw worki Expla	biological n ing. in in detail l gn a neural r	neuron and how a perce	an artificial n eptron solves select a cours	a linearly se OR e based on f	parable prob	lem.		03
Draw work Expla Desig	biological ning. ing in detail light gn a neural r	neuron and how a perce network to X2	an artificial n eptron solves select a cours	a linearly se OR se based on f	parable prob ollowing data X5	lem. a. O1	O2	
Draw work Expla Desig	biological ning. yin in detail lign a neural r X1 Job	neuron and how a percenterwork to X2 Personal	an artificial n eptron solves select a cours X3 Successes	a linearly se OR se based on f X4 Available	parable probollowing data X5 Availability	lem. a. O1 Elective	O2 Elective	O3 Elective
Draw work Expla Desig Sr. No.	biological ning. in in detail ling a neural r X1 Job Prospects	neuron and now a perce network to X2 Personal Interest	an artificial n eptron solves select a cours X3 Successes History	a linearly se OR e based on f X4 Available Resources	parable probollowing data X5 Availability of Teacher	lem. a. O1 Elective	O2 Elective 2	O3 Elective 3
Draw work Expla Desig Sr. No.	biological ning. yin in detail light a neural right X1 Job Prospects Very high	neuron and now a percent vork to X2 Personal Interest Good	an artificial n eptron solves select a cours X3 Successes History Acceptable	a linearly se OR e based on f X4 Available Resources Acceptable	parable prob collowing data X5 Availability of Teacher Good	lem. a. O1 Elective 1	O2 Elective 2	O3 Elective 3

OR

b. Draw outline of typical genetic algorithm cycle. Also explain its working in detail.

What is the value of x that optimizes the function?

What is the minimum function value?

[6]

