No. of Printed Pages : 2

SARDAR PATEL UNIVERSITY

Third Semester B. Sc. Examination (NC)(Batch- 2010)

Monday, 26th November, 2018

Time: From 02:00 to 05:00 PM

Subject: PHYSICS [US03CPHY02]

Title: Solid State Physics, Thermodynamics and Wave oscillation

Total Marks 70

N.B:(i) All the	symbols	have	their	usual	meanings.
					etione indi

(ii)	Figu	res at the right side of questions indicate full marks.					
Que.1		Choose the correct option for the following questions.	[10]				
	1	The lattice parameters for a cubic crystal system is					
		(a) $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$ (b) $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$					
		(c) $a=b=c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ (d) $a=b=c$, $\alpha = \beta = \gamma \neq 90$	•				
	2	The number of atoms present in the unit cell of bcc structure is					
	_	(a) $A = \{b\}$ (b) $\{c\}$ (c) $\{a\}$ (d) $\{a\}$					
	3	The atomic packing factor of hexagonal close-packed crystal structure is					
	•	%.					
		(a) 52 (b) 56 (c) 60 (d) 74					
	4	The full form for fcc is					
	_	(a) face centered cubic (b) full centered cubic					
		(c) face circle cubic (d) face centered circle					
	5	Radiation is one of the method through which is transmitted.					
	-	(a) heat (b) protons (c) neutron (d) electrons					
	6	Amount of transmitted heat is directly proportional todifference.					
	•	(a) density (b) temperature (c) volume (d) pressure					
	7	According to the law, the rate of emission of radiant energy is					
	•	proportional to T^4 .					
		(a) Stefan's (b) Gauss' (c) Kirchhoff's (d) Coulomb's					
	8	A resistive force proportional to the amplitude and independent of the					
	U	frequency in solid is referred to as					
		(a) viscous (b) Coulomb friction					
		(c)structural damning (d)none of these					
	9	For case, the reactance in the series LCR circuit is predominantly					
	7	inductive.					
		(a) ω<ωο (b) ω>ωο (c) ω≤ωο (d) ω=ωο					
	10	inos					
	10	(a) Raman (b) Emission (c) Fraunhofer (d) All above these					
		(a) Kalliali (b) Elitission (c)					
0		Answer briefly any Six of the following questions.	[12]				
Que.2	1	Define the terms: Lattice and Basis.					
		Differentiate between the crystalline solids and non-crystalline solids.					
	2	Show the planes (110) and (010) in the cubic crystals.					
	3	Draw the structure of CsCl.					
	4	What are the properties of the bad conductor.					
	5						
	6	State Wien's displacement law. Obtain relation between the logarithmic decrement, relaxation time and	d				
	7						
	o	duality factor. Discuss in brief Nuclear Magnetic Resonance.	ለ ይ ፕነሰገ				
	8	Discuss in prici rencical tragitation resonance.	CPFO				

Que.3	a	Explain the symmetry elements in a cable elystal system	[05]
	b	figures. Define the terms: 1. Crystal 2. Coordination number 3. APF. OR	[03]
Que.3	a	Show that the APF for bcc structure is 0.68.	[05]
•	b	Calculate the number of atoms per fcc structure.	[03]
Que.4	a	With suitable figure, explain procedure to determine Miller indices of a plane.	[05]
	b	Draw the following crystal directions in the unit cell. (i) [100] (ii) [002]. OR	[03]
Que.4	a b	Discuss the Laue method to record the diffracted rays. State and explain Braggs' law of diffraction.	[05] [03]
Que.5	a	Discuss Lee-Charlton's Method to determine thermal conductivity of a card board with necessary diagrams.	[05]
	b	What are Conduction and Convection of heat? OR	[03]
Que.5	a	Discuss the Searle's method to determine thermal conductivity of a metal rod.	[05]
	b	Obtain the expression for heat transfer Q and define coefficient of thermal conductivity K .	[03]
Que.6	a	Explain in detail the experimental method for the determination of Stefan's	[05]
	b	constant. Draw the neat diagram of disappearing filament optical pyrometer. OR	[03]
Que.6	a b	State Stefan-Boltzmann's law and give mathematical proof of it. Draw the labeled diagram of total radiation pyrometer.	[05] [03]
Que.7		What are damped oscillations? Derive the differential equation of the damping oscillator of a system having one degree of freedom with suitable diagram. OR	[08]
Que.7		Derive the equation for total energy of a weakly damped oscillator and also discuss the average power dissipation during one time period.	[80]
Que.8	,	What is galvanometer? Using the example of moving coil Galvanometer and LCR circuit, explain mechanical damping and electromagnetic damping. OR	l [80]
Que.8		What are forced oscillations? Discuss the forced oscillations of a one dimensional damped oscillator and obtain its general solution.	- [08]

