Sardar Patel University, Vallabh Vidyanagar

B.Sc. [Semester-III] Examinations: 2018-19

Subject: Mathematics

US03CMTH02

Max. Marks: 70

Numerical Analysis

Date: 05/12/2018, Wednesday

Timing: 02.00 pm - 05.00 pm

Q: 1. Answer the following by choosing correct answers from given choices.

10

[1] If f(x) = 0 is expressed as $x = \phi(x)$ then for approximation of root of f(x) = 0using Iteration method, one of the necessary conditions for the convergence of a sequence of approximations is that

[A] $|\phi(x)| > 1$

[B] $|\phi(x)| < 1$

[C] $|\phi'(x)| > 1$

[D] $|\phi'(x)| < 1$

- [2] In usual notations, the formula $\xi = x_{i+1} \frac{(\Delta x_i)^2}{\Delta^2 x_{i+1}}$ is used by the method of [C] Iteration [D] Aitken's Δ^2 -Process [B] Bisection [A] False position
- [3] For approximation of a root of an equation, intersection of a chord joining end points of graph of a function in an interval and the X-axis is used in

[A] False position method

[B] Bisection method

[C] Iteration method

[D] Aitkin's Δ^2 -Process

[4] $\delta_{\frac{7}{2}}$ is given by [A] $y_4 - y_3$

[B] $y_3 - y_4$ [C] $y_7 - y_2$ [D] $y_2 - y_7$

[5] Which of the follwing is true?

[A] $\Delta y_5 = \nabla y_4$ [B] $\Delta y_5 = \nabla y_5$

[C] $\Delta y_4 = \nabla y_5$ [D] $\Delta y_6 = \nabla y_5$

[6] If $y_5 = 4$, and $y_{15} = 10$ then $E^5 y_{10} =$

[C] 15

[D] 20

[7] The divided differences are

- [A] not dependent on their arguments
- symetrical in their arguments
- not symetrical in their arguments
- [D]none

[8] For the given data

	х	$x_0 = 2$	$x_1 = 6$	$x_2 = 10$	$x_3 = 14$
^լ	у	15	20	32	50

 $[x_1 \ x_2] =$ [A] 1

[B] 2

[C] 3

[D] none

- [9] Runge-Kutta method is used for finding a numeric [A] integral [B] derivative [C] solution of a differential equation [D] none
- [10] For using Simpson's $\frac{1}{3}$ rule it is required that the number of sub-intervals be [C] a multiple of 3 [D] a multiple of 8 [A] even

(P.T.O.)

- [1] Find an interval containing an initial approximation of $\sin x = \cos x$
- [2] Find first approximation of a root of $x^3 + 8x 7 = 0$ using bisection method
- [3] Find a real root of $x^3 3x + 5 = 0$, correct upto three decimal places, by Newton-Raphson method
- [4] Prove that $\Delta \nabla = \Delta \nabla$
- [5] If $E^{10}y_1 = 20$ then find $E^5y_6 + \dot{E}^6y_5$
- [6] Prove that $e^{hD} = E$
- [7] If $y_1 = 4$, $y_3 = 12$, $y_4 = 19$ and $y_x = 7$ find x. Write the formula you use and also give it's name
- [8] Using Langrange's interpolation formula, find the form of the function y(x) from the following table

х	0	1	3	4
у	-12	0	12	24

- [9] In usual notations prove that $[x_0, x_1, x_2, x_3, ..., x_n] = \frac{1}{h^n n!} \Delta^n y_0$
- [10] Using Trapezoidal rule find $\int_{0}^{5} \frac{1}{x+1} dx$, with subintervals of length 1 unit.
- [11] Discuss Euler's method for solving a differential equation.
- [12] Using Trapezoidal rule find $\int_{0}^{3} \cos x dx$, with 3 subintervals of equal lengths.
- **Q:** 3 [A] Discuss the Aitken's Δ^2 -Process for approximation of a real root of an equation.
 - [B] Using Bisection method find a real root of the equation $x^3 x 4 = 0$ correct upto three decimal palaces

OR

- Q: 3 [A] Discuss the False Position method for approximation
 - [B] Find a real root of $\cos x = 3x 1$ by iteration method correct upto three decimal places
- Q: 4 [A] Derive Newton's Forward Difference interpolation formula for equally spaced values of arguments.
 - [B] Using Gauss's forward interpolation formula find f(32), given that f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794

5

5

5

5

Q: 4 [A] Use Stirling's formula to find u_{32} , given that

 $u_{20} = 14.035, \ u_{25} = 13.674, \ u_{30} = 13.257, \ u_{35} = 12.734, \ u_{40} = 12.089 \ \mathrm{and} \ u_{45} = 11.309$

5

[B] Let y = g(x) be a function such that

$$g(20) = 2854$$
, $g(24) = 3162$, $g(28) = 3544$, $g(32) = 3992$

Use Everett's formula to obtain g(25).

5

Q: 5 [A] Derive Newton's divided difference formula

5

[B] The following table of values of x and y is given:

x]	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309
Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when $x=6$							

OR

Q: 5 [A] Discuss the method of succesive apprximation for inverse interpolation.

5

5

[B] Using Langrange's interpolation formula express the following function as a sum of partial fractions

$$\frac{x^2 + x - 3}{x^3 - 2x^2 - x + 2}$$

5

Q: 6 [A] Derive the formula of Simpson's $\frac{3}{8}$ -rule for numerical integration.

5

[B] Using Romberg's method, compute $I=\int\limits_0^1 \frac{1}{1+x} \ dx$, correct upto three decimal places

5

OR

Q: 6 [A] Describe Picard's method of successive approximation and use it to approximate y when x = 0.2, given that y(0) = 1 and $\frac{dy}{dx} = x - y$, correct upto three decimal places

10

,