[43/A-9]

Sardar Patel University

B.Sc. Semester - III Examination

Monday, 2nd December, 2019

Time: 2 - 00 to 5 - 00 pm

Course Code: USC03CSTA02

(Elements of Probability Theory)

Note: (i) Simple/Scientific calculator is allowed.

(ii) Figures to the right indicate marks.

(iii) Q.3 to 6 each sub question is of 5 marks

Q.1 Multiple Choice Questions

 (10×1)

(1) The joint pdf of X and Y is $f(x,y) = \frac{xy}{4}$, 0 < x < 2, 0 < y < 2 and zero otherwise, then P(X < 1) is

- (b) 3/8
- (c) 1

(d) 1/8

(2) If X and Y are two independent variates then

(a) Cov(X,Y)=0

(b) $f_{XY}(x, y) = f_{X(x)} f_{Y(y)}$

(c) $f_{Y/X}(y/x) = f(y)$

(d) All of the above

(3) If $P(A) = \frac{1}{4}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{1}{2}$ then $P(A^c \cup B^c) =$ ___

- (c) 0.80
- (d) 0.50

(4) If V(X) = 1 then V(2X - 3) is

(a) 5

(c) 4

(d) 2

(5) If $M_X(t) = (1-3t)^{-1}$ then E(2+3X) =_

(d) 11

(6) The pdf of a r.v. X is then $P(X > 1/3) = \frac{1}{3}$

- $f(x) = \begin{cases} 1 |x|, -1 < x < 1 \\ 0, otherwise \end{cases}$
- (b) 11/18
- (c) 13/18
- (d) None of these

(7) Which of the following is not possible in probability distribution?

- (a) $P(x) \geq 0$
- (b) $\sum P(x) = 1$
- (c) $\sum xP(x) = 2$
- (d) P(x) = -0.4

(8) A r.v. X has a probability distribution as follows:

χ	0	1	2	3	
P(x)	2k	3 <i>k</i>	13 <i>k</i>	2 <i>k</i>	

Where k is a positive constant, the P(X < 2) =

- (a) 0.90
- (c) 0.65

(d) 1.00

(9) The joint prob. distribution of X and Y is

	. У	
X	1	2
1	1/13	4/13
2	0	8/13

then $P(X + Y \ge 3) = _{--}$

- (a) 4/13
- (b) 1/13
- (c) 5/13

If $M_X(t) = e^{2(e^t - 1)}$ is the m.g.f of a random variable X then V(3 + 2X) = 0(10)

(c) 8

Q.2 Short Type Questions (Attempt Any Ten)

 (10×2)

- (1) State an additive law of probability for two events. Using this, Prove that P(A') = 1 P(A)
- (2) Find β_1 and β_2 if m.g.f. of X is $M_X(t) = e^{2(t+t^2)}$
- (3) A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?
- (4) Check whether the following function is p.m.f. or not?

$$f(x) = \frac{1}{2x}$$
, $x = 1,2,...$ and zero otherwise

- (5) The p.m.f. of a r.v. X is P(x) = Kx, x = 1,2,3,4,5 and zero otherwise. Determine (i) the value of K (ii) the cdf of X.
- (6) Find the m.g. f of *X* if $f(x) = \frac{1}{8}(x+1)$, 2 < x < 4
- (7) State Bayes' theorem.
- Evaluate $P(A \cup B)$ if $2P(A) = P(B) = \frac{5}{13}$ and $P(A/B) = \frac{2}{5}$
- (9) Verify whether f(x,y) = 4xy, $0 \le (x,y) \le 1$ and zero otherwise, is the joint pdf of X and Y or not.
- (10) The joint p.d.f of X and Y is f(x,y) = k(x + 3y), 0 < x < 1, 0 < y < 1and zero otherwise (i) Determine the value of k (ii) the marginal distribution of X
- Define moment generating function. State its properties.
- Given that $P(X = x) = K\left(\frac{1}{2}\right)^x$, x = 0,1,2,...6 and zero otherwise, is the p.m.f. of r.v. X. Determine the value
- Q.3(a) Let A and B are two independent events with P(A) < P(B). If $P(A \cap B) = \frac{6}{25}$ and P(A/B) + P(B/A) = 1then find P(A).
 - (b) Let A and B be two independent events. The prob. of simultaneous occurrence of these events is 1/8 and the probability of none of these occurs is 3/8, find P(A) and P(B).

- For two events A and B, Prove that (i) $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$ (ii) $P(A \cap B) \ge P(A) + P(B) - 1$ Q.3 (a)
 - (b) Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If try to solve the problem independently, find the probability that (i) the problem is solved (ii) exactly one of them solves the
 - An urn contains 5 white and 2 black marbles. If 3 marbles are to be selected at random and let X denote the no. of black marbles, find the probability distribution and c.d.f of X. Determine the prob. that a randomly selected marbles have atleast one black marble.

(b) If
$$f(x) = \begin{cases} kx, & 0 \le x < 3 \\ k(6-x), & 3 \le x < 6 \\ 0, & x \ge 6 \end{cases}$$
 is the pdf of X then find (i) k (ii) the c.d.f of X (iii) $P\left(\frac{1}{2} < X < 4\right)$

Q.4 (a) The probability distribution of a r.v. X is given below:

The probability distribution of a r.v. X is given below:	ß
3 4 5 6	
$x = \frac{1}{2k} \frac{2k}{2k} \frac{k^2 + k}{2k^2} \frac{4k^2 + k}{4k^2 + k}$	$\frac{3\kappa^2}{2}$
P(X = x) k k $3k$ $2k$ k	
$\int_{V_{1}} \int_{V_{2}} \int_{V$	1

Find (i) k (ii) the c.d.f. of X (iii) the minimum value of k so that $P(X \le k) = \frac{1}{2}$

- (b) Given that $f(x) = k\left(\frac{1}{2}\right)^x$, x = 0,1,2,...6 and zero otherwise, is the probability distribution of X. Find k and c.d.f of X.
- Q.5(a) The probability distribution of X is If $f(x) = \frac{1}{10}$, -5 < x < 5 and zero otherwise. Find the m.g.f of X and hence mean and variance of X.
 - The moment generating function of X is $M_X(t)=(3-2e^t)^{-1}$, Find β_1 and β_2

- Q.5 (a) If $f(x) = 5e^{-5x}$, x > 0 and zero otherwise, is the p.d.f. of X. Find the m.g.f, c.g.f and β_1 and β_2 .
 - (b) From a group of 5 men and 3 women, a committee of 3 members is selected. If X represents the no. of

women in the committee, find V(X).

- Q.6 (a) Let X and Y be two continuous r.v's with the joint probability density function f(x,y)=24xy, 0 < x < 1, 0 < y < 1, x+y < 1 and zero otherwise Find (i) the marginal distribution of Y (ii) Calculate P(X>1/3)
 - (b) Consider two r.v's X and Y with joint probability distribution given in the following table:

·	· Y			
<i>X</i>	2	. 4	5	
1	1/12	1/24	1/24	
2	1/6	1/12	1/8	
3	1/4	1/8	1./4	

Find (i) $P(X \le 2, Y \le 4)$ (ii) P(Y = 2/X = 1) (iii) the marginal distribution of X and Y (iv) Are X and Y independent?

OR

Q.6 The joint pdf of X and Y is f(x, y) = cxy, 0 < x < 4, 1 < y < 5 and zero otherwise Determine (i) the constant c (ii) $P(X \ge 3, Y \le 2)$ (iii) P(X + Y < 3)

.