[55/A-11]

Sardar Patel University

B.Sc. Semester - III Examination

Saturday, 30th November, 2019

Time: 2.00 to 4.00 pm Course Code: US03ESTA01 (Operations Research - I)

M.Marks: 70

-	i) Graph paper will provide	on request.	(ii) Q.3 to	6, each sub question h	
	ltiple Choice Questions			;	(10×1)
(1)	In the optimal simplex table	$e C_j - Z_j = 0$ value indica	tes		
	(a) unbounded solution	(b) alternate solution	(c) cyclic solution	(d) None of the abo	ove
(2)	In simplex method, we add		variables in case of $" = "$		
	(a) Slack variable	(b) Surplus variable	(c) Artificial variable	(d) None	
(3)	One disadvantage of using	North – West corner meth	nod is		
	(a) it does not take in to a	ecount transportation cos	t (b) it is complicate	d to use	
	(c) it leads to a degenerate		(d) all of the above		
(4)	A basic feasible solution of	a LPP is said to be	if at least on	e of the basic variable	is zero
	(a) degenerate	(b) Non - degenerate	(c) infeasible	(d) unbounded	
(5)	A minimization problem car	n be converted into maxir	nization problem by chang	ing the sign of coeffici	ents in the
	(a) constraints	(b) objective function	(c) both (a) and (b)	(d) None	
(6)	From the following method	ls is a	method to obtain initial so	olution to TP	4
	(a) Hungarian	(b) Simplex	(c) North - West	(d) Newton Raph	ison
(7)	A given TP is said to be unb	alanced, if the total suppl	y is not equal to the total_		
	(a) optimization	1-7	• •	` '	
(8)	The coefficient of artificial v	variable in the objective fo	inction of maximization pr	oblem is	
	(a) 0	(b) M	(c) — M	(d) none	
(9)	The TP is said to be unbalar				
	(a) $\sum ai \neq \sum bi$	(b) $\sum ai = \sum bi$	(c) $m=n$	(d) $m + n - 1$	•
(10)	Feasible solution satisfies				
	(a) only constraints		(b) only non – negative		
	(c) (a) and (b) both		(d) (a), (b) and optimur	n solution	
Q.2 She	ort Type Questions (Attempt	Any Ten)			(10×2)
(1)	With reference to LPP, de	fine the following:			í
	(i) feasible solution (ii)	optimum solution		-	
(2)) When is dummy required				
(3)	•		nced one?		
(4)	With reference to LPP, du	ial of the dual is	*		
	Fill in the blank and justif				
(5)	•		btain an optimum solutior	i to a LPP.	
(6)				•	
(7)				·	
(8)) From the simplex table,	how will you identify t	the cases of infeasible so	olution, unbounded so	olution and
	alternate optimal solution	•			
(9			outgoing variables in simp	lex method.	
(10) What do you mean by de	generacy in a TP?			
(11	Write down the standard	form of LPP			.,

 $Max Z = 3X_1 + 5$

Subject to constraints

$$2X_1 + 3X_2 \le 4$$
, $3X_1 + 2X_2 \le 7$, $X_1, X_2 \ge 0$

- (12) What is unbalanced TP?
- Q.3(a) A housewife wishes to mix two types of foods F1 and F2 in such a way that vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. Food F1 costs Rs 60 per kg and Food F2 costs Rs 80 per kg. Food F1 contains 3 units/kg of vitamin A and 5 units/kg of vitamin B while Food F2 contains 4 units/kg of vitamin A and 2 unit/kg of vitamin B. Formulate this problem as a linear programming problem to minimize the cost of such a mixture.
 - (b) What are the advantages and limitations of Graphical method in solving LPP?

Obtain the solution of the following LPP using Graphical Method

$$Max Z = 3X_1 + 4X_2$$

Subject to constraints

$$5X_1 + 4X_2 \le 200$$
, $3X_1 + 5X_2 \le 150$, $5X_1 + 4X_2 \ge 100$, $8X_1 + 4X_2 \le 80$, $X_1, X_2 \ge 0$

- Q.3(a) A firm produces products, A & B, each of which requires two resources, namely raw materials and labour. Each unit of product - A requires 2 & 4 units and each unit of product - B requires 3 & 3 units respectively of raw materials and labour. Every day at least 60 units of raw materials and at most 96 units of labour must be used. If the unit profit contribution of product - A is Rs. 40/-, product - B is Rs.35/-, determine the number of units of each of the products that should be made each day to maximize the total profit contribution.
 - (b) Solve the following LPP by graphical method:

$$Max Z = 10X_1 + 8X_2$$

Subject to the constraints

$$2X_1 + X_2 \le 20$$
, $X_1 + 3X_2 \le 30$, $X_1 - 2X_2 \ge -15$, $X_1, X_2 \ge 0$

Use duality to solve the LPP Q.4(a)

$$Min Z = 2X_1 + 2X_2$$

Subject to the constraints

$$2X_1 + 4X_2 \ge 1$$
, $-X_1 - 2X_2 \le -1$, $X_1 + X_2 \ge 1$, $X_1, X_2 \ge 0$

(b) Solve the following problem, using Big - M method

$$Max Z = 6X_1 + 4X_2$$

Subject to the constraints

$$2X_1 + 3X_2 \le 30$$
,

$$3X_1 + 2X_2 \le 24$$
, $X_1 + X_2 \ge 3$, $X_1, X_2 \ge 0$

$$X_1 + X_2 \ge 3$$

$$X_1, X_2 > 0$$

Find at least two solutions.

OR

Cadbury India Ltd. produces three varieties of Chocolates – Hard, mild & soft from three different inputs l_1, l_2 Q.4 & l_3 . One unit of Hard requires 2 units of l_1 and 4 unit of l_2 . One unit of mild requires 5 units of l_1 , 4 units of I_2 and 3 units of I_3 and one unit of soft requires 10 units of I_1 & 15 units of I_3 . The total available of inputs in the company's warehouse is as under:

$I_1 = 100 \text{ units}$	$I_2 = 400 \text{ units}$	$I_3 = 50$ units

The profit per unit for hard, mild & soft are Rs. 20, 30 and 40 respectively.

Formulate the problem so as to maximize the total profit by using Simplex method.

Q.5(a) Goods have to be transported from sources S_1, S_2 and S_3 , to destinations D_1, D_2 and D_3 . The transportation cost per unit capacities if the sources and requirements of destinations are given in the following table.

		<u> </u>		-
	D_1	D_2	D_3	Supply
S_1	8	5	6	120
S_2	15	10	12	80
S_3	3	9	10	80

Demand	150	80	50	

Determine the transportation schedule so that cost is minimized.

List out various methods of finding initial basic feasible solution (i.b.f) of Transportation Problem (TP). Determine an i.b.f solution using North West Corner Method.

	ļ	D_1	D_2	D_3	D_4	Supply
ļ	P_1	2	3	11	7	6
Plant	P_2	1	0	6	1	1.
	P_3	5	8	15	9	10
De	emand	7	5	3	2	
		-		OR		

- Q.5(a) (i) What is unbalanced transportation problem? Does any extra cost required to considered in case of such problem?
 - (ii) The occurrence of degeneracy while solving a transportation Problem means what?
 - (b) List out the various methods of obtaining an i.b.f solution of TP. Obtain an i.b.f solution of following TP using any one method.

	Warehouses				
Plants	W_1	W_2	W_3	W_4	Supply
$\overline{P_1}$	6	2	6	12	· 120
P_2	4	4	2	4	200
$\frac{z}{P_3}$	13	8	7	2	80
Demand	50	80	90	180	400

A steel company has three open hearth furnaces and five rolling mills. Transportation cost (Rs/kg.) for shipping Q.6 steel from furnaces to rolling mills are shown in the following table:

		Mills					
		M_1	M_2	M_3	M_4	M ₅	Capacities (in kg.)
	$\overline{F_1}$	4	2	3	. 2	6	8
Furnaces	F_2	5	4	5	2	1	12
	$\overline{F_3}$	6	5	4	7	3	14
Requiremen	nts (in kg.)	4	4	6	8	- 8	

What is the optimal shipping schedule?

OR

A product is produced at 4 factories F_1 , F_2 , F_3 and F_4 . Their unit production costs are Rs. 2, 3, 1 and 5 Q.6 respectively. Production capacities of the factories are 50, 70, 30 and 50 units respectively. The product is supplied to 4 stores S_1 , S_2 , S_3 and S_4 , the requirements of which are 25, 35, 105 and 20 respectively. Unit costs of transportation are given below:

Factories	S_1	S_2	S_3	S_4
$\overline{F_1}$	2	4	6	11
F_2	10	8	7	5
F_3	13	3	9	12
F	4	6	. 8	3

Find the transportation plan such that the total production and transportation cost is minimum.