۲ ٦		N P
50	Seat No) :

No. of Printed Pages: 03

SARDAR PATEL UNIVERSITY

BSc Sem III Examination

Mathematics

	14	diffillatics	
	US03CMTH2	21-Numerical Analysis	
D۵	ite : 29-11-2019, Friday		-00 TO 5-00 PM
	1 Answer the following by selecting correct		(10)
	•		
1.	The numerical difference between the tru	e value of quantity and its approximate valu	e is called
	·		
	A. Absolute error	B. Relative error	
	C. Percentage error	D. None	
2.	Newton-Raphson method is used for		
	A. Interpolation	B. Approximation of derivative	
	C. Approximation of root	D. None	
3.	f(a) and $f(b)$ are opposite in signs then	the graph of $y = f(x)$ must intersect	in at least
	one point.		
	A. Line $y = x$	B. Line $y = -x$	
	C. Y-axis	D. X-axis	
4.	$\Delta y_1 - \Delta y_1 = \underline{\hspace{1cm}}$		
	A. $\Delta^2 y_0$	B. $\Delta^2 y_1$	
	C. $\Delta^2 y_{-1}$	D. None	
5,	Δ=		
	A. $1 + E$	B. $E-1$ D. $1-E^{-1}$	
	C. $1 + E^{-1}$	D. $1 - E^{-1}$	
6.	$e^{hD} = $		
•	Α. Δ	Β. ∇	
	C. <i>E</i>	D. μ	
7	. Stirling's formula can be obtained by tak	ng of Gauss's forward and backwar	d formulae.
	A. Mean	B. Addition	
	C. Subtraction	D. None	
8	. The Lagrange's interpolation formula is a	applicable for arguments.	
	A. equal spaced	B. unqual spaced	
	C. equal and unqual both	D. none	
C	Substituting $n = $ in the General form	mula for integration, we get Simpson's $\frac{3}{8}$ rule	2.
		в. 2	1
	A. 5	D. 4	
	C. 3		
1	LO. The Euler's modified method is for findi		
	A. Numerical Differentiation	B. Numerical Integration	
	C. Solution of differential equation	D. None	የጥው)
		\bigcirc	/
		—	

Q. 2 Answer any TEN.

(20)

1) Obtain the formula to obtain $\sqrt[3]{N}$ using Newton-Raphson method.

- 2) Find an interval containing an initial approximation of sinx cosx = 0.
- 3) Explain Newton-Raphson method in short.
- 4) Show that $\mu^2 = 1 + \frac{1}{4}\delta^2$.
- 5) In usual notations Prove that $E^{-1} = 1 \nabla$.
- **6)** If $\nabla y_{10} = 10$ and $y_{10} = 25$ then find the value of y_9
- 7) Prove that $[x_2, x_1] = [x_1, x_2]$.
- 8) Given the set of tabulated points (x, y) which are (1, -3), (3, 9), (4, 30) and (6, 132). Find y at x = 2 using Newton's Divided difference formula.
- 9) Tabulate $y = x^2$ for x = 3,4,5,6 and hence calculate $\sqrt[2]{12}$.
- 10) Discuss geometrical interpretation of Trapezoidal rule.
- **11)** Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using Trapezoidal rule with h = 0.25.
- 12) Explain Picard's's method to solve first order ordinary differential equation.
- **Q. 3 (a)** Explain Method of False Position to solve an equation f(x) = 0.

(5)

(b) Find a real root of equation 2x = cosx + 3 by iteration method correct up to three decimal places.

(5)

OR

Q.3 (c) Explain Iteration method.

(5)

(d) Find a real root of equation $x^3 - 4x - 9 = 0$ by method of False Position correct up to three decimal places.

Q.4 (a) Derive Newton's Forward Difference interpolation formula.

(5)

(5)

(b) Find the polynomial f(x), which satisfy the following data and hence find the value of f(1.5).

x	1	2	3	4	5
f(x)	4	13	34	73	136

OR

Q. 4 (c) Derive Gauss's Forward interpolation formula.

(5)

(d) Use suitable interpolation formula, find f(30) from the following table.

(5)

x	21	25	29	33	37
f(x)	18.4708	17.8144	17.1070	16.3432	15.5154

- Q. 5 (a) Derive Newton's divided difference formula.
 - (b) Using Lagrange's interpolation formula find the form of function y(x) from the following table. Hence find y(2).

(5)

(5)

(5)

(5)

(5)

х	0	1	3	4
у	-12	0	12	24

OR

- **Q. 5 (c)** Obtain formulae for 1^{st} and 2^{nd} order differentiation of Gauss's Backward difference formula for tabular values of x.
 - (d) Compute f'(1.1) and f''(1.1) from the following table.

x	1.1	1.2	1.3	1.4	1.5
f(x)	2.0091	2.0333	2.0692	2.1143	2.1667

- **Q.6 (a)** Derive the Simpson's $\left(\frac{3}{8}\right)^{th}$ rule
 - **(b)** Evaluate $\int_0^{1.2} e^x dx$ by using Simpson's one third rule. (5)

OR

- Q.6 (c) Derive Taylor's series Method to solve differential equation $\frac{dy}{dx} = f(x,y)$, with initial condition $y(x_0) = y_0$. (5)
 - (d) Use Euler's method to compute y(0.2) if $\frac{dy}{dx} = x + y$ with y(0) = 1. (5)

