Seat No:

[27]

SARDAR PATEL UNIVERSITY

B.SC.SEM-III EXAMINATION

 05^{th} December 2019, Thursday 02.00 p.m. to 05.00 p.m.

US03CMTH02

(Numerical Analysis)

Maximum Marks: 70

Q.1	Choose the correct option in the following questions, mention the [10]						
	correct option in the answerbook.						
(1)	In iteration method the sequence of approximation converges to the root						
` '	provided						
	(a) $ \phi'(x) > 1$ (b) $ \phi'(x) < 1$ (c) $ \phi(x) \neq 1$ (d) $ \phi(x) < 1$						
(2)	If $y_5 = 4$ and $y_{15} = 10$ then $E^5 y_{10} =$						
` '	(a) 10 (b) 5 (c) 15 (d) 20						
(3)	The interval $[-2, 2]$ is divided into 8 equal subintervals then the length of						
	each subinterval is						
	(a) 2 (b) 0.8 (c) -2 (d) 0.5						
(4)	The algebraic sum of any difference column in the difference table is						
	(a) 0 (b) 1 (c) any number (d) positive number						
(5)	By putting $n = \dots$ in the General formula for integration, we get simpson's						
	$\frac{1}{3}$ rule.						
	(a) 1 (b) 2 (c) 3 (d) -1						
(6)	For a set of tabulated points $(x_0, y_0), (x_1, y_1), \dots (x_n, y_n)$ with equal spaced						
	arguments, the interpolation for x near x_n is best given by						
	(a) Gauss's froward formula (b) Newton's froward formula						
	(c) Gauss's backward formula (d) Newton's backward formula						
(7)	Trapezoidal rule is obtain from						
(a) Simpson's $\frac{1}{3}$ rule (b)General formula for integration							
	(c) Simpson's $\frac{3}{8}$ rule (d) Gauss formula						
(8)	The Lagrange's interpolation formula is applicable for arguments.						
	(a) Unequal spaced (b) Equal spaced (c) positive (d) negative						
(9)	In forward differences $\Delta^2 y_0 = \dots$						
, .	(a) $\Delta y_0 - \Delta y_1$ (b) $y_2 - 2y_1 + y_0$ (c) $y_2 + 2y_1 + y_0$ (d) $\Delta y_2 - \Delta y_0$						
(10)	For a function $f(x)$ if $f(a) < 0$ and $f(b) > 0$ then, there exist: $x \in (a,b)$						
	such that $f(x) = 0$.						
	(a) Exactly one (b) at least one (c) at most one (d) none of them						
Q.2	Attempt any ten in short: [20]						
	Discuss the method of successive approximations in short.						

(2) Derive a formula to calculate the cube root of a number N.

- (3) Prove that $E^{-1} = 1 \nabla$
- (4) Explain interpolation.
- (5) If $\phi(x) = (2x + 5)^{(1/3)}$ then find $|\phi'(x)|$ for x=2.5.
- (6) In usual notations show that $\Delta \nabla = \Delta \nabla$.
- (7) State Newton's forward interpolation formula for equally spaced arguments.
- (8) Define averaging and shift operators.
- (9) State Romberg Integration formula.
- (10) Define divided differences.
- (11) State Trapezoidal rule.
- (12) State Simpson's $\frac{1}{3}$ rule.
- Q.3(a) Obtain the real root of the equation $x^3 2x 5 = 0$ correct upto three decimal points using false position method. [6]
 - (b) Explain Aitken's \triangle^2 procedure of approximation to find real of equation. OR.
- Q.3(c) Obtain the real root of the equation $x^3 + x 4 = 0$ correct upto three decimal points using bisection method. 6
 - (d) Using the formula $x_{n+1} = \frac{1}{2}[x_n + \frac{N}{x_n}]$, calculate the square root of 7. 4
- Q.4(a) The populations of a town were as under: 6 1891 1901 1911 1921

1931Populations (in thousands) 66 81 93 101

Estimate the population for the year 1895 and 1925.

(b) In usual, Prove that (i) $\triangle - \nabla = \delta^2$, (ii) $\mu = \sqrt{1 + \frac{1}{4}\delta^2}$. [4]

OR

- Q.4(c) Derive Newton's forward interpolation formula for equally spaced values |6|of argument.
 - (d) Locate and correct the error in the following table of values 4

X	2.5	3.0	3.5	4.0	4.5	5.0	5.5
У	4.32	4.83	5.27	5.47	6.26	6.79	7.23

Q.5(a) Obtain first and second order numerical differentiation formula for Newton's backward difference formula.

[5]

(b) Using Lagrange's interpolation formula express the function $\frac{x^2 + 6x + 1}{(x-1)(x+1)(x-4)(x-6)}$ as sums of partial fraction.

[5]

OR

Q.5(c) Derive Newton's divided difference formula.

[5]

(d) Show that the divided differences are symmetrical in their arguments.

[5]

Q.6(a) Derive the general formula for numerical integration.

[5]

(b) Evaluate $\int_0^1 \frac{1}{1+x} dx$, correct to three decimal places using Simpson's $\frac{1}{3}$ rule and by taking h = 0.05.

[5]

OR

Q.6(c) Derive the formula of Simpson's $\frac{3}{8}$ rule.

[5]

(d) Use Picard's method to approximate y when x = 0.25 and x = 0.5, given that y(0) = 0 and $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ correct to three places. [5]

__ X-__

.