SARDAR PATEL UNIVERSITY E3|57 B.sc(CA & IT) (SEMESTER-III)EXAMINATION-202 1 St Janyary, 2021, Friday 10:00 a.m to 11:00 a.m V5035//T22 /PS03SIIT22(Operation Research-I) Maximum Marks:35 [05] **Multiple choice Questions** Q-1 A constraint in an LP model restricts (A) value of the objective function (B)value of the decision variable (C) use of the available resources (D) all of the above To convert ≥ inequality constraints into equality constraints ,we must 2 (A) add a surplus variable (B) subtract an artificial variable (C) subtract a surplus variable and an artificial variable (D) add surplus variable and subtract an artificial variable The number of non negative variable in a basic feasible solution to a mxn 3 transportation problem is (D) m+n+1 (C) m+n-1 (B) m+ n _ is a method to obtain initial (A) mn From the following methods _____ basic feasible solution to Transportation Problem. 4 (D)Newton Raphson (A)North-West (B)Simplex (C)Hungarian The Penalty in VAM represents difference between _____ cost of 5 respective row/column. (A) Two Largest (B) smallest two (C) largest and smallest (D)none [04] Fill in the blanks & True or False. In graphical representation the bounded region is known as Q-2 1 A variable which does not appear in the basic variable (B) column of 2 simplex table is always equal to zero (true/false) Every loop has _____ number of cells North - West corner refers to top left corner (true /false) 3 [10] 4 Short questions(Attempt any five) Q-3 Write the definition of operation research. 1 Write down any two scopes of OR. 2 Define slack variables. 3 Define artificial variables. 4 What is transportation problem? Write mathematical form of transportation problem? 5 What do you mean by balanced transportation problem? 6 7 Define loop in MODI method. 8 [16] Do as directed(Attempt any four) Q-4 Solve the following LP problems graphically Maximize $Z = 5 x_1 + 7 x_2$ 1 Subject to. $x_1 + x_2 \le 4$ $10x_1 + 7 x_2 \le 35$ $X_1, X_2 \ge 0$ [P.T.O.] [1]

SEAT NO.

No. of Printed Pages: 2

Solve the following LP problems graphically

Maximize
$$z=3x_1+5x_2$$

 $x_1 + 2x_2 \le 20$

 $x_1 + x_2 \le 15$

x₂≤8,

 $x_1, x_2 \ge 0$

Writ Dual of given problem

Min
$$Z = 7x_1 + 3x_2 + 8x_3$$

$$3x_1 + 6x_2 + 4x_3 \ge 4$$

$$4x_1 + x_2 + 5x_3 \ge 1$$

$$X_1, x_2, x_3 \ge 0$$

Solve by simplex method:

maximize
$$Z = 3x_1+5x_2$$

$$x_1 + x_2 \le 4$$

$$3 x_1 + 2x_2 \le 18$$

Obtain the initial basic feasible solution of the following Transportation 5 Problem using Northwest corner method.

	D1	D2	D3	D4	Supply
01	19	30	50	10	7
O2	70	30	40	60	9
O3	40	8	70	. 20	18
Demand	5	8	7	14	

6 Obtain the initial basic feasible solution of the following Transportation Problem using Vogel's approximation method

	Α	В	С	D	Supply
<u> </u>	1	5	3	3	34
II	3	3	1	2	15
	0	2	2	3	12
IV	2	7	2	4	19
Demand	21	25	17	17	

7 Obtain the optimal solution of the following Transportation Problem.

	D1	D2	D3	D4	Supply
01	1	2	3	4	6
O2	4	3	2	0	8
O3	0	2	2	1	10
Demand	4	6	8	6	

Find Basic Initial feasible Solution of Un balanced Transportation Problem 8 using Least cost method

	Α	В	С	D	E	Supply
l	5	4	8	6	5	600
11	4	5	4	3	2	400
III	3	6	5	8	4	1000
Demand	450	400	200	250	300	